期刊文献+
共找到760篇文章
< 1 2 38 >
每页显示 20 50 100
基于多头注意力机制与长短期记忆网络的自然场景文本识别 被引量:2
1
作者 姚炜 冯宪伟 《传感技术学报》 CSCD 北大核心 2024年第12期2107-2112,共6页
随着计算机视觉和自然语言处理技术的不断发展,自然场景文本检测与识别技术已成为计算机视觉领域的研究热点之一。提出了一种基于多头注意力机制与长短期记忆网络(LSTM)的自然场景文本检测与识别方法。该方法通过结合目标检测算法和序... 随着计算机视觉和自然语言处理技术的不断发展,自然场景文本检测与识别技术已成为计算机视觉领域的研究热点之一。提出了一种基于多头注意力机制与长短期记忆网络(LSTM)的自然场景文本检测与识别方法。该方法通过结合目标检测算法和序列识别算法,利用多头注意力机制对图像中的文本区域进行精确的定位和特征提取,进而通过LSTM网络对提取的特征进行编码和解码,实现对自然场景中文本的准确识别。在文本检测阶段,采用基于深度学习的目标检测算法,结合多头注意力机制,通过并行计算多个独立的注意力头来捕获图像中不同尺度和方向上的文本信息,提高文本检测的准确性和鲁棒性。在文本识别阶段,利用LSTM网络对检测到的文本区域进行序列建模,通过编码和解码过程将图像中的文本信息转化为可读的字符序列。实验结果表明,所提出的方法在自然场景文本检测与识别任务上取得了优异的性能。与现有的方法相比,所提出的方法在准确性和鲁棒性方面均有所提升,尤其是在处理复杂背景和多样化文本时表现出更好的适应性。 展开更多
关键词 文本检测与识别 多头注意力机制 自然场景文本 长短期记忆网络
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
2
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
基于双向长短时记忆网络和自注意力机制的心音分类
3
作者 卢官明 李齐健 +4 位作者 卢峻禾 戚继荣 赵宇航 王洋 魏金生 《数据采集与处理》 北大核心 2025年第2期456-468,共13页
心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进... 心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进行分帧处理,提取每帧心音信号的梅尔频率倒谱系数(Mel⁃frequency cepstral coefficients,MFCC)特征;将MFCC特征序列输入Bi⁃LSTM网络,利用Bi⁃LSTM网络提取心音信号的时域上下文特征;通过自注意力机制动态调整Bi⁃LSTM网络各时间步输出特征的权重,得到有利于分类的更具鉴别性的心音特征;通过Softmax分类器实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016心音数据集上对所提出的算法使用10折交叉验证法进行了评估,得到0.9425的灵敏度、0.9437的特异度、0.8367的精度、0.8865的F1得分和0.9434的准确率,优于对比的典型算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,具有潜在的临床应用前景。 展开更多
关键词 心音分类 梅尔频率倒谱系数 双向长短记忆网络 注意力机制
在线阅读 下载PDF
基于双向长短期记忆网络与稀疏自注意力的票据文本识别方法 被引量:1
4
作者 冯宪伟 姚炜 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1946-1951,共6页
提出了一种基于双向长短期记忆网络(BiLSTM)与稀疏自注意力机制的票据文本识别方法。针对票据文本识别中面临的复杂布局、多变字体及背景噪声干扰等挑战,采用深度卷积神经网络进行预处理,准确提取文本区域,并将图像数据转换为序列数据... 提出了一种基于双向长短期记忆网络(BiLSTM)与稀疏自注意力机制的票据文本识别方法。针对票据文本识别中面临的复杂布局、多变字体及背景噪声干扰等挑战,采用深度卷积神经网络进行预处理,准确提取文本区域,并将图像数据转换为序列数据输入到BiLSTM模型中。BiLSTM通过其双向结构,能够同时捕捉文本序列中的前向和后向信息,有效提高了文本理解的准确性。为了进一步提升识别性能,引入了稀疏自注意力机制,通过计算序列中不同位置之间的相关性得分,形成稀疏的注意力矩阵,从而捕捉文本中的长距离依赖关系。这种机制不仅降低了计算复杂度,还提高了模型对关键信息的关注度。实验结果表明,所提出的票据文本识别方法在处理复杂票据文本时表现出色,具有较高的识别精度和效率。与传统方法相比,所提方法能够更好地适应票据文本的多样性和复杂性,并在实际应用中展现出良好的鲁棒性和泛化能力。 展开更多
关键词 稀疏注意力机制 双向长短期记忆网络 票据文本识别 光学字符识别
在线阅读 下载PDF
基于状态精细化长短期记忆和注意力机制的社交生成对抗网络用于行人轨迹预测 被引量:6
5
作者 吴家皋 章仕稳 +1 位作者 蒋宇栋 刘林峰 《计算机应用》 CSCD 北大核心 2023年第5期1565-1570,共6页
针对当前行人轨迹预测研究仅考虑影响行人交互因素的问题,基于状态精细化长短期记忆(SR-LSTM)和注意力机制提出一种用于行人轨迹预测的社交生成对抗网络(SRA-SIGAN)模型,利用生成对抗网络(GAN)学习获得目标行人的运动规律。首先,使用SR-... 针对当前行人轨迹预测研究仅考虑影响行人交互因素的问题,基于状态精细化长短期记忆(SR-LSTM)和注意力机制提出一种用于行人轨迹预测的社交生成对抗网络(SRA-SIGAN)模型,利用生成对抗网络(GAN)学习获得目标行人的运动规律。首先,使用SR-LSTM作为位置编码器提取运动意图信息;其次,通过设置速度注意力机制合理地为同一场景中的行人分配影响力,以更好地处理行人的交互;最后,由解码器生成预测的未来轨迹。在多个公开数据集上的测试实验结果表明,SRA-SIGAN模型的总体表现良好。特别是在Zara1数据集上,与SR-LSTM模型相比,SRA-SIGAN模型的平均位移误差(ADE)和最终位移误差(FDE)分别减小了20.0%和10.5%;与社交生成对抗网络(SIGAN)模型相比,SRA-SIGAN的ADE和FDE分别下降了31.7%和24.4%。 展开更多
关键词 生成对抗网络 长短期记忆网络 行人轨迹预测 注意力机制 行人交互
在线阅读 下载PDF
基于双向长短期记忆网络和自注意力机制的食品安全裁判文书分类方法 被引量:12
6
作者 姜同强 万忠赫 张青川 《科学技术与工程》 北大核心 2019年第29期188-192,共5页
目前食品安全领域裁判文书数量持续增长,而其类别标签的缺失导致检索困难。针对将裁判文书自动化分类的问题,提出一种结合self-attention机制和BLSTM(bi-long short-term memory)网络的分类方法,该方法使用自训练注意力机制,对向量化的... 目前食品安全领域裁判文书数量持续增长,而其类别标签的缺失导致检索困难。针对将裁判文书自动化分类的问题,提出一种结合self-attention机制和BLSTM(bi-long short-term memory)网络的分类方法,该方法使用自训练注意力机制,对向量化的文本进行加权表示,从而对裁判文书中的重要特征重点关注。同时,由两个方向相反的LSTM网络组成的BLSTM网络,能够更好地学习上下文信息,提高网络性能。通过实验,准确率达到了95. 23%,相较于传统的机器学习方法,所提方法能够更好地完成食品安全领域裁判文书分类任务。 展开更多
关键词 长短期记忆神经网络 注意力机制 自然语言处理 食品安全
在线阅读 下载PDF
基于长短期记忆网络和注意力机制的油井产油量预测 被引量:6
7
作者 潘少伟 郑泽晨 +2 位作者 王吉哲 蔡文斌 王朝阳 《科学技术与工程》 北大核心 2021年第30期13010-13015,共6页
准确预测油井产油量在油田生产中具有非常重要的意义。针对传统的线性预测方法中存在的适应性差问题,以及在时序处理时难以很好地拟合历史数据问题,提出使用长短期记忆网络和注意力机制来提取油田生产数据中存在的时序关系和增强油井产... 准确预测油井产油量在油田生产中具有非常重要的意义。针对传统的线性预测方法中存在的适应性差问题,以及在时序处理时难以很好地拟合历史数据问题,提出使用长短期记忆网络和注意力机制来提取油田生产数据中存在的时序关系和增强油井产油量预测模型的可移植性,并分析了时间滞后、学习率衰减和神经元随机失活3个参数对油井产油量预测模型的影响,发现当这3个参数分别为36、0.3和0.8时,油井产油量预测模型的表现最佳。在利用随机森林方法补全动液面的缺失数据后,使用获得的3个最优参数建立油井产油量预测模型,并将该模型应用于中国南方某油田3口油井的产油量预测中。具体的预测结果是:H3-32井后期的实际产油总量为1470.5 t,预测值为1442.33 t,相对误差为1.92%;H3-34井后期的实际产油总量为1564.5 t,预测值为1545.98 t,相对误差为1.20%;H3-35井后期的实际产油总量为742.2 t,预测值为772.12 t,相对误差为4.05%。由此可见,基于长短期记忆网络和注意力机制的油井产油量预测模型具有较高的准确率。研究结果可应用于中国油田生产开发方案的制订,对中国油田科技水平的进步具有非常重要的理论与现实意义。 展开更多
关键词 长短期记忆网络(LSTM) 注意力机制 随机森林 油井 产油量
在线阅读 下载PDF
基于卷积双向长短期记忆网络的微网继电保护故障诊断技术 被引量:1
8
作者 杨志淳 闵怀东 +3 位作者 杨帆 雷杨 胡伟 陈鹤冲 《太阳能学报》 北大核心 2025年第1期420-428,共9页
分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相... 分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相电流数据进行预处理,提高后续模型对数据的学习效率;然后,融合卷积神经网络和双向长短期记忆网络提出卷积双向长短期记忆网络的微网继电保护故障诊断方法,提取三相电流数据长序列和局部序列特征实现故障分类、故障定位,融合注意力机制,重点关注对故障诊断有影响的特征,提高故障诊断准确率;最后经过RTDS实时仿真系统进行验证,实验结果表明,所提方法故障诊断精度高、计算时间短,同卷积神经网络、长短期记忆网络、人工神经网络相比,故障分类准确率分别提升8.53%、9.62%、11.45%,故障定位准确率分别提升7.47%、10.61%、10.85%,验证所提方法的有效性与先进性。 展开更多
关键词 微网 继电保护 故障诊断 卷积双向长短期记忆网络 三相电流 注意力机制
在线阅读 下载PDF
基于序列成分重组与时序自注意力机制改进TCN-BiLSTM的短期电力负荷预测
9
作者 易雅雯 娄素华 《电力系统及其自动化学报》 北大核心 2025年第4期78-87,共10页
针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始... 针对区域级电力负荷预测精度较低的问题,提出一种基于序列成分重组与时序自注意力机制改进时间卷积网络-双向长短期记忆网络(TCN-BiLSTM)的短期负荷预测方法。首先,通过中心频率法确定最佳初始分解数目,进而采用变分模态分解算法将原始负荷序列分解为多个不同频率的成分序列;其次,基于各成分序列的样本熵对多个成分序列进行K均值聚类,以获得最佳聚类数量的重组负荷序列分量;接着,将各重组分量输入所提出的负荷预测模型,获得各重组分量预测结果;最终,线性叠加各重组成分序列预测结果以获得最终负荷预测结果。算例分析表明,该方法与其他相关对比模型相比,预测均方根误差降低46.37%、模型拟合效果平均提升3.24%,表明该方法负荷预测精度高、模型拟合效果好,适用于区域级电力负荷预测。 展开更多
关键词 负荷预测 变分模态分解 样本熵 K均值聚类 时序自注意力机制 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于注意力机制的Bi-LSTM光伏发电超短期功率预测方法研究与实施
10
作者 归一数 霍勇 +1 位作者 徐亦淳 李晨曦 《太阳能学报》 北大核心 2025年第9期437-444,共8页
针对新能源光伏场站功率预测性能逐年下滑和考核费用居高不下的问题,提出一种融合双向长短期记忆网络(Bi-LSTM)和注意力机制的优化方法。首先,通过应用Bi-LSTM捕捉功率数据的时间依赖性,提升对时间序列变化的理解能力;其次,结合注意力... 针对新能源光伏场站功率预测性能逐年下滑和考核费用居高不下的问题,提出一种融合双向长短期记忆网络(Bi-LSTM)和注意力机制的优化方法。首先,通过应用Bi-LSTM捕捉功率数据的时间依赖性,提升对时间序列变化的理解能力;其次,结合注意力机制使模型能聚焦于对预测结果影响最大的特征,进一步提高预测精度;最后,利用历史数据建模验证准确性。现场模型部署后表明,该模型相比传统单模型和集成学习模型,可更好地捕捉功率快速变化,场站超短期预测准确率可提高10%以上。 展开更多
关键词 光伏发电 预测 长短期记忆 注意力机制 部署
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:31
11
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测 被引量:26
12
作者 姚越 刘达 《现代电力》 北大核心 2022年第2期212-218,共7页
为了提高风电功率的预测精度,针对风电数据间歇性与时序性的特点,提出了一种基于注意力机制的卷积神经网络-长短期记忆(convolutional neural networks-long short-term memory,CNN-LSTM)网络预测模型。首先利用CNN提取风电数据动态变... 为了提高风电功率的预测精度,针对风电数据间歇性与时序性的特点,提出了一种基于注意力机制的卷积神经网络-长短期记忆(convolutional neural networks-long short-term memory,CNN-LSTM)网络预测模型。首先利用CNN提取风电数据动态变化的多维特征,然后将特征向量构造成时序形式并作为LSTM网络的输入,最后使用注意力机制进行优化,通过赋予LSTM网络隐含层不同的权重,增强重要信息的作用,完成风电功率预测。采用国内某风电场的风电数据进行实验,结果表明该模型比支持向量机、LSTM模型、CNN-LSTM模型具有更好的预测精度。 展开更多
关键词 风电功率预测 卷积神经网络 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于层级注意力机制与双向长短期记忆神经网络的智能合约自动分类模型 被引量:9
13
作者 吴雨芯 蔡婷 张大斌 《计算机应用》 CSCD 北大核心 2020年第4期978-984,共7页
针对区块链平台上智能合约应用种类繁多,人工筛选合适的智能合约应用服务日益困难的问题,提出一种基于层级注意力机制与双向长短期记忆(Bi-LSTM)神经网络的智能合约自动分类模型——HANN-SCA。首先,利用Bi-LSTM网络从智能合约源代码和... 针对区块链平台上智能合约应用种类繁多,人工筛选合适的智能合约应用服务日益困难的问题,提出一种基于层级注意力机制与双向长短期记忆(Bi-LSTM)神经网络的智能合约自动分类模型——HANN-SCA。首先,利用Bi-LSTM网络从智能合约源代码和账户信息两个角度同时建模,最大限度地提取智能合约的特征信息。其中源代码角度关注智能合约中的代码语义特征,账户信息角度关注智能合约的账户特征。然后,在特征学习过程中从词层面和句层面分别引入注意力机制,重点捕获对智能合约分类有重要意义的单词和句子。最后,拼接代码特征与账户特征以生成智能合约文档级特征表示,通过Softmax层完成分类任务。实验结果表明,所提模型在Dataset-E、Dataset-N和Dataset-EO数据集上的分类正确率分别达到了93.1%、91.7%和92.1%,效果明显优于传统的支持向量机模型(SVM)和其他神经网络基准模型,且具有更好的稳定性与更高的收敛速度。 展开更多
关键词 智能合约分类 层级注意力机制 双向长短期记忆网络 代码语义特征 账户特征
在线阅读 下载PDF
基于注意力机制及长短期记忆神经网络的慢性阻塞性肺疾病氧减状态辨识 被引量:4
14
作者 吴月芳 胡明昕 孙培莉 《南京理工大学学报》 CAS CSCD 北大核心 2023年第5期629-635,共7页
为提高慢性阻塞性肺疾病氧减状态的辨识性能,该文将注意力机制有效融入长短期记忆神经网络,提出了一种基于注意力机制的长短期记忆神经网络方法:首先,抽取每个待辨识状态点的四种有效鉴别特征,包括血脉氧饱和度指数、脉搏、血脉氧饱和... 为提高慢性阻塞性肺疾病氧减状态的辨识性能,该文将注意力机制有效融入长短期记忆神经网络,提出了一种基于注意力机制的长短期记忆神经网络方法:首先,抽取每个待辨识状态点的四种有效鉴别特征,包括血脉氧饱和度指数、脉搏、血脉氧饱和度指数的窗口特征以及梯度特征;其次,在此特征表示的基础上,通过引入注意力机制,使用训练集来训练基于注意力机制的长短期记忆神经网络;最后,使用测试集来验证所训练模型的有效性。与多个经典机器学习算法的对比实验结果表明:所提出的基于注意力机制的长短期记忆神经网络方法的辨识模型能够准确识别氧减状态,全局性能指标曲线下面积达到了0.8531。所提方法对于慢性阻塞性肺疾病的准确诊断具有重要的参考价值。 展开更多
关键词 特征表示 注意力机制 长短期记忆神经网络 慢性阻塞性肺疾病 氧减状态辨识
在线阅读 下载PDF
基于时空注意力机制的双向长短期记忆神经网络的股指预测研究 被引量:3
15
作者 杨蓦 王静 《运筹与管理》 CSSCI CSCD 北大核心 2023年第8期174-180,共7页
股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM... 股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM)对香港地区恒生指数收盘价进行有效性的实证检验。其中,空间注意力机制用于捕捉输入指标之间的相关性并为其赋予区别权重,时间注意力机制用于描述数据的时间相关性以解决长期预测中的时间依赖问题并为时间步赋予区别权重,BiLSTM神经网络用于拟合数据并构建预测模型。本文还比较了四种基于注意力机制的神经网络方法和六种基线方法,实验结果表明,与当下流行的股票指数预测方法相比,基于双维度注意力机制的BiLSTM可以在短、中、长期预测中均实现更准确的股票指数收盘价预测。 展开更多
关键词 注意力机制 双向长短期记忆神经网络 股票指数预测 长期预测 时空关系
在线阅读 下载PDF
基于注意力机制的卷积-双向长短期记忆模型跨领域情感分类方法 被引量:8
16
作者 龚琴 雷曼 +1 位作者 王纪超 王保群 《计算机应用》 CSCD 北大核心 2019年第8期2186-2191,共6页
针对现有跨领域情感分类方法中文本表示特征忽略了重要单词的情感信息,且在迁移过程中存在负迁移的问题,提出一种基于注意力机制的卷积双向长短期记忆(AC-BiLSTM)模型的知识迁移方法。首先,利用低维稠密的词向量对文本进行向量表示;其次... 针对现有跨领域情感分类方法中文本表示特征忽略了重要单词的情感信息,且在迁移过程中存在负迁移的问题,提出一种基于注意力机制的卷积双向长短期记忆(AC-BiLSTM)模型的知识迁移方法。首先,利用低维稠密的词向量对文本进行向量表示;其次,采用卷积操作获取局部上下文特征之后,通过双向长短期记忆(BiLSTM)网络充分考虑特征之间的长期依赖关系;然后,通过引入注意力机制考虑不同词汇对文本的贡献程度,同时为了避免迁移过程中出现负迁移现象,在目标函数中引入正则项约束;最后,将在源领域产品评论训练得到的模型参数迁移到目标领域产品评论中,并在少量目标领域有标注数据上进行微调。实验结果表明,与AE-SCL-SR方法和对抗记忆网络(AMN)方法相比,AC-BiLSTM方法的平均准确率分别提高了6.5%和2.2%,AC-BiLSTM方法可以有效地提高跨领域情感分类性能。 展开更多
关键词 情感分类 跨领域 迁移学习 注意力机制 长短期记忆网络
在线阅读 下载PDF
基于自注意力长短期记忆网络的Web软件系统实时剩余寿命预测方法 被引量:5
17
作者 党伟超 李涛 +2 位作者 白尚旺 高改梅 刘春霞 《计算机应用》 CSCD 北大核心 2021年第8期2346-2351,共6页
为了能够实时准确对Web软件系统的剩余使用寿命(RUL)进行预测,考虑Web系统健康状态性能指标的时序特性和指标间的相互依赖特性,提出了一种基于自注意力长短期记忆(Self-Attention-LSTM)网络的Web软件系统实时剩余寿命预测方法。首先,搭... 为了能够实时准确对Web软件系统的剩余使用寿命(RUL)进行预测,考虑Web系统健康状态性能指标的时序特性和指标间的相互依赖特性,提出了一种基于自注意力长短期记忆(Self-Attention-LSTM)网络的Web软件系统实时剩余寿命预测方法。首先,搭建加速寿命测试实验平台来收集反映Web软件系统老化趋势的性能指标数据;然后,根据该性能指标数据的时序特性来构建长短期记忆(LSTM)循环神经网络以提取性能指标的隐含层特征,并使用自注意力机制建模特征间的依赖关系;最后,得到系统RUL的实时预测值。在三组测试集上,把所提模型与反向传播(BP)网络和常规的循环神经网络(RNN)做了对比。实验结果表明,所提模型的平均绝对误差(MAE)比长短期记忆(LSTM)网络平均低16.92%,相对准确率(Accuracy)比LSTM网络平均高5.53%,验证了Self-Attention-LSTM网络剩余寿命预测模型的有效性。可见所提方法能为优化系统抗衰决策提供技术支撑。 展开更多
关键词 Web软件系统 剩余使用寿命 长短期记忆网络 注意力机制 抗衰决策
在线阅读 下载PDF
基于自注意力机制的桥梁预应力数据分类
18
作者 刘恒洋 李中海 王俊婷 《计算机应用》 北大核心 2025年第S1期132-136,共5页
在桥梁预应力施工数据分类算法的领域中,实时准确地进行数据分类对提高生产效率以及排除安全隐患尤为重要。针对传统的桥梁预应力施工数据分类模型的分类不准确问题,构建一种基于自注意力机制的长短期记忆(LSTM)网络混合模型,以结合自... 在桥梁预应力施工数据分类算法的领域中,实时准确地进行数据分类对提高生产效率以及排除安全隐患尤为重要。针对传统的桥梁预应力施工数据分类模型的分类不准确问题,构建一种基于自注意力机制的长短期记忆(LSTM)网络混合模型,以结合自注意力机制和LSTM模型高效准确分类的优点。首先,引入时间绝对位置编码(tAPE)和高效的相对位置编码(eRPE);其次,使用伪高斯分布的概率运算,并且模型架构通过增量学习用新数据不断地完善。实验结果表明,所提混合模型在桥梁预应力施工数据分类数据集上的平均准确率达到了96.6%,相较于ConvTran和Inception_Time等对比模型,最少提升了6.1%。 展开更多
关键词 桥梁预应力 注意力机制 长短期记忆网络 位置编码 伪高斯分布
在线阅读 下载PDF
嵌入注意力机制的时空网络设计及孔隙度可靠性预测
19
作者 李艳辉 陶悦 《石油地球物理勘探》 北大核心 2025年第3期555-563,共9页
孔隙度是评价储层和计算储量的一个重要指标。然而,传统取芯方法获取孔隙度成本较高,基于回归分析和统计学模型预测的孔隙度误差较大。为此,构建一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制的储层孔隙度预测模... 孔隙度是评价储层和计算储量的一个重要指标。然而,传统取芯方法获取孔隙度成本较高,基于回归分析和统计学模型预测的孔隙度误差较大。为此,构建一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制的储层孔隙度预测模型,并利用实际的测井数据验证其性能。首先通过CNN和BiLSTM捕获测井数据的复杂非线性时空关系;然后嵌入卷积自注意力机制,通过因果卷积产生查询和键,使局部信息更好地融入注意力机制中,相比传统自注意力机制,避免了异常数据对预测结果的影响;最后采用蒙特卡洛dropout的方法量化模型的不确定性,提供储层孔隙度预测的置信区间,进一步评估预测的可信度。多个模型对比实验表明,所提方法预测储层孔隙度的准确度较高;通过两口不同特性井的实验揭示,该方法泛化能力较强。 展开更多
关键词 储层孔隙度预测 卷积神经网络 双向长短期记忆网络 注意力机制 不确定性量化
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测
20
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部