期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双向LSTM网络的流式文档结构识别 被引量:10
1
作者 张真 李宁 田英爱 《计算机工程》 CAS CSCD 北大核心 2020年第1期60-66,73,共8页
流式文档结构识别对于排版格式自动优化和信息提取等具有重要作用。基于规则的结构识别方法泛化能力较差,而基于机器学习的方法未考虑文档单元之间的长距离依赖关系,识别准确率较低。针对该问题,提出一种基于双向长短期时间记忆(LSTM)... 流式文档结构识别对于排版格式自动优化和信息提取等具有重要作用。基于规则的结构识别方法泛化能力较差,而基于机器学习的方法未考虑文档单元之间的长距离依赖关系,识别准确率较低。针对该问题,提出一种基于双向长短期时间记忆(LSTM)网络的流式文档结构识别方法。从文档单元的格式、内容与语义3个方面筛选关键特征,并将文档结构识别看作序列标注问题,使用双向LSTM神经网络构建识别模型,以实现对18种逻辑标签的识别。实验结果表明,该方法能够对文档结构进行有效识别,其识别效果优于方正飞翔软件。 展开更多
关键词 文档结构识别 流式文档 特征提取 序列标注 长短期时间记忆网络
在线阅读 下载PDF
面向人体行为识别的深度特征学习方法比较 被引量:9
2
作者 匡晓华 何军 +1 位作者 胡昭华 周媛 《计算机应用研究》 CSCD 北大核心 2018年第9期2815-2817,2822,共4页
针对人体行为识别问题,比较了两种基于智能手机惯性加速度传感器数据的深度特征学习方法。先将传感器数据进行重叠加窗的预处理;然后将带标签的样本数据直接输入深度网络模型中,通过端到端的特征学习,最终输出行为分类结果。通过对比深... 针对人体行为识别问题,比较了两种基于智能手机惯性加速度传感器数据的深度特征学习方法。先将传感器数据进行重叠加窗的预处理;然后将带标签的样本数据直接输入深度网络模型中,通过端到端的特征学习,最终输出行为分类结果。通过对比深度卷积神经网络、长短期记忆网络两种深度学习方法在公开网站UCI的机器学习知识库的人体行为识别数据集上的识别效果。实验结果表明,采用Dropout深度卷积神经网络特征学习方法识别准确率为90.98%,是一种有效的深度特征学习方法。 展开更多
关键词 深度学习 行为识别 序列数据分类 深度卷积神经网络 长短期时间记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部