基于卷积神经网络-长短时记忆(convolutional neural network and long short-term memory,CNN-LSTM)模型开展了曲线变量的假人伤害预测应用研究.分别使用标定后1D简化模型和约束系统CAE模型开展变量和响应采集,搭建训练和测试数据库,使...基于卷积神经网络-长短时记忆(convolutional neural network and long short-term memory,CNN-LSTM)模型开展了曲线变量的假人伤害预测应用研究.分别使用标定后1D简化模型和约束系统CAE模型开展变量和响应采集,搭建训练和测试数据库,使用Pytorch搭建假人头部加速度和胸部压缩量CNN-LSTM预测模型,研究了样本数量对训练后模型精度的影响.结果显示,当训练样本数量达到一定规模后,继续增加训练样本数量对模型泛化能力提升有限,然而,在本文应用场景中,当样本数量到50时,测试样本预测精度R均值超过0.85,满足工程开发的预测精度要求.展开更多
传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特...传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特征词的权重;其次,利用卷积神经网络(convolutional neural network, CNN)提取局部特征,利用双向长短时记忆网络(bidirectional long and short-term memory, BiLSTM)高效提取上下文语义特征和长距离依赖关系;再结合注意力机制对情感特征加成;最后由Softmax分类器实现文本情感预测。实验结果表明:所提出的情感分类算法在精确率、召回率和F值上均有较大提升。相较于TextCNN、BiLSTM、长短时记忆网络(long and short-term memory, LSTM)、CNN和随机森林模型,所提方法的F值分别提高2.35%、3.63%、4.36%、2.72%和6.35%。这表明所提方法能够充分融合情感特征词的权重,利用上下文语义特征,提高情感分类性能。所提方法具有一定的学术价值和应用前景。展开更多
文摘基于卷积神经网络-长短时记忆(convolutional neural network and long short-term memory,CNN-LSTM)模型开展了曲线变量的假人伤害预测应用研究.分别使用标定后1D简化模型和约束系统CAE模型开展变量和响应采集,搭建训练和测试数据库,使用Pytorch搭建假人头部加速度和胸部压缩量CNN-LSTM预测模型,研究了样本数量对训练后模型精度的影响.结果显示,当训练样本数量达到一定规模后,继续增加训练样本数量对模型泛化能力提升有限,然而,在本文应用场景中,当样本数量到50时,测试样本预测精度R均值超过0.85,满足工程开发的预测精度要求.
文摘传统机器学习和深度学习模型在处理情感分类任务时会忽略情感特征词的强度,情感语义关系单薄,造成情感分类的精准度不高。提出一种融合情感词典的改进型BiLSTM-CNN+Attention情感分类算法。首先,通过融合情感词典的特征提取方法优化特征词的权重;其次,利用卷积神经网络(convolutional neural network, CNN)提取局部特征,利用双向长短时记忆网络(bidirectional long and short-term memory, BiLSTM)高效提取上下文语义特征和长距离依赖关系;再结合注意力机制对情感特征加成;最后由Softmax分类器实现文本情感预测。实验结果表明:所提出的情感分类算法在精确率、召回率和F值上均有较大提升。相较于TextCNN、BiLSTM、长短时记忆网络(long and short-term memory, LSTM)、CNN和随机森林模型,所提方法的F值分别提高2.35%、3.63%、4.36%、2.72%和6.35%。这表明所提方法能够充分融合情感特征词的权重,利用上下文语义特征,提高情感分类性能。所提方法具有一定的学术价值和应用前景。