期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于波束形成的长短时记忆网络语音分离算法研究 被引量:4
1
作者 兰朝凤 刘岩 +1 位作者 赵宏运 刘春东 《电子与信息学报》 EI CSCD 北大核心 2022年第7期2531-2538,共8页
在利用深度学习方式进行语音分离的领域,常用卷积神经网络(RNN)循环神经网络进行语音分离,但是该网络模型在分离过程中存在梯度下降问题,分离结果不理想。针对该问题,该文利用长短时记忆网络(LSTM)进行信号分离探索,弥补了RNN网络的不... 在利用深度学习方式进行语音分离的领域,常用卷积神经网络(RNN)循环神经网络进行语音分离,但是该网络模型在分离过程中存在梯度下降问题,分离结果不理想。针对该问题,该文利用长短时记忆网络(LSTM)进行信号分离探索,弥补了RNN网络的不足。多路人声信号分离较为复杂,现阶段所使用的分离方式多是基于频谱映射方式,没有有效利用语音信号空间信息。针对此问题,该文结合波束形成算法和LSTM网络提出了一种波束形成LSTM算法,在TIMIT语音库中随机选取3个说话人的声音文件,利用超指向波束形成算法得到3个不同方向上的波束,提取每一波束中频谱幅度特征,并构建神经网络预测掩蔽值,得到待分离语音信号频谱并重构时域信号,进而实现语音分离。该算法充分利用了语音信号空间特征和信号频域特征。通过实验验证了不同方向语音分离效果,在60°方向该算法与IBM-LSTM网络相比,客观语音质量评估(PESQ)提高了0.59,短时客观可懂(STOI)指标提高了0.06,信噪比(SNR)提高了1.13 dB,另外两个方向上,实验结果同样证明了该算法较IBM-LSTM算法和RNN算法具有更好的分离性能。 展开更多
关键词 语音分离 超指向波束形成 长短时记忆网络算法
在线阅读 下载PDF
基于改进长短时记忆神经网络-自适应增强算法的多天气车辆分类方法 被引量:4
2
作者 李达 张照生 +2 位作者 刘鹏 王震坡 董昊天 《汽车工程》 EI CSCD 北大核心 2020年第9期1248-1255,共8页
针对目前国内外车辆分类效果不理想和受天气影响较大的问题,本文中提出一种基于改进长短时记忆神经网络自适应增强算法(LSTM-AdaBoost)的多天气车辆分类方法,并提出一种“多层网格法”以准确地确定LSTM的超参数。首先建立地磁车辆检测... 针对目前国内外车辆分类效果不理想和受天气影响较大的问题,本文中提出一种基于改进长短时记忆神经网络自适应增强算法(LSTM-AdaBoost)的多天气车辆分类方法,并提出一种“多层网格法”以准确地确定LSTM的超参数。首先建立地磁车辆检测系统平台和车辆分类方法,然后分析基于改进LSTM-AdaBoost的车辆分类结果,并对不同车辆分类方法和不同天气下的分类准确率进行了对比。结果表明,与最邻近结点算法和反向传播神经网络算法相比,本文所提出的方法具有较高的准确率,最高分类准确率为92.2%。暴雨、雾霾和晴天3种天气中,暴雨时的分类准确率最低,但差别不大,最大相差3.9个百分点。 展开更多
关键词 车辆分类 地磁信号 长短记忆神经网络-自适应增强算法 多天气
在线阅读 下载PDF
水生萤火虫养殖过程中的水质监测方法
3
作者 王声亮 《新疆农机化》 2023年第5期46-48,共3页
水生萤火虫是一种独特的生物,对其养殖环境的要求较高,因此需要对水质环境进行精细化监测和调控。本文提出了一种可以基于物联网和web技术的水质监测系统,针对大陆水生萤火虫的幼虫生长过程中的水质环境进行监测,通过主成分分析法对多... 水生萤火虫是一种独特的生物,对其养殖环境的要求较高,因此需要对水质环境进行精细化监测和调控。本文提出了一种可以基于物联网和web技术的水质监测系统,针对大陆水生萤火虫的幼虫生长过程中的水质环境进行监测,通过主成分分析法对多变量时间序列进行筛选,降低模型输入数据维度,运用多元堆叠长短时记忆网络-差值分析算法(MSLSTM-DA)建立有关水质监测和预警模型,为今后的养殖提供预测和相应的决策参考。本文的研究在一定程度上填补了国内关于水生萤火虫养殖环境自动化监测和预警方面研究的空白,具有较高的实用社会价值和经济效益。 展开更多
关键词 水生萤火虫 水质监测 主成分分析法 多元堆叠长短记忆网络-差值分析算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部