选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台...选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)和归一化均方根误差(NRMSE)的平均值为1.139′和0.040,H分量的RMSE和NRMSE的平均值为11.85 n T和0.086,Z分量的RMSE和NRMSE的平均值为15.10 n T和0.026;LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 n T/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 n T/a,较线性外推法提高了47%,较二次外推法提高了57%。展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
文摘选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)和归一化均方根误差(NRMSE)的平均值为1.139′和0.040,H分量的RMSE和NRMSE的平均值为11.85 n T和0.086,Z分量的RMSE和NRMSE的平均值为15.10 n T和0.026;LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 n T/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 n T/a,较线性外推法提高了47%,较二次外推法提高了57%。
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。
文摘准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。