期刊文献+
共找到1,079篇文章
< 1 2 54 >
每页显示 20 50 100
基于双向长短时记忆网络和自注意力机制的心音分类
1
作者 卢官明 李齐健 +4 位作者 卢峻禾 戚继荣 赵宇航 王洋 魏金生 《数据采集与处理》 北大核心 2025年第2期456-468,共13页
心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进... 心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进行分帧处理,提取每帧心音信号的梅尔频率倒谱系数(Mel⁃frequency cepstral coefficients,MFCC)特征;将MFCC特征序列输入Bi⁃LSTM网络,利用Bi⁃LSTM网络提取心音信号的时域上下文特征;通过自注意力机制动态调整Bi⁃LSTM网络各时间步输出特征的权重,得到有利于分类的更具鉴别性的心音特征;通过Softmax分类器实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016心音数据集上对所提出的算法使用10折交叉验证法进行了评估,得到0.9425的灵敏度、0.9437的特异度、0.8367的精度、0.8865的F1得分和0.9434的准确率,优于对比的典型算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,具有潜在的临床应用前景。 展开更多
关键词 心音分类 梅尔频率倒谱系数 双向长短时记忆网络 自注意力机制
在线阅读 下载PDF
基于生成对抗网络与长短时记忆网络的机器人书法系统
2
作者 韩浩 刘佳 《西南大学学报(自然科学版)》 北大核心 2025年第7期231-244,共14页
机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(L... 机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(LSTM)的机器人书法系统。该书写系统将汉字笔画图像转换为轨迹序列,无须使用笔画轨迹编码信息,克服了传统书写轨迹信息缺失的问题。首先构建了一个生成对抗架构,其中LSTM网络与鉴别器网络结合,以减小训练数据集的规模。然后,LSTM网络通过多个循环逐步生成新的轨迹点,使机器人能够逐渐完成整个汉字书法的书写。最后,利用鉴别器网络评估LSTM网络输出结果来辅助机器人找到最佳策略,并引入强化学习算法来进一步提高系统性能。实验结果证明,所提出的系统能够高效产生高质量的汉字书法。 展开更多
关键词 生成对抗网络 长短时记忆网络 强化学习 汉字书法 机器人书法系统
在线阅读 下载PDF
基于图卷积神经网络和长短时记忆网络的输电网宽频振荡定位
3
作者 李雨攸 顾洁 +1 位作者 吴佳庆 金之俭 《广东电力》 北大核心 2025年第5期54-64,共11页
新能源发电机组大规模接入电网引发的宽频振荡给电网稳定运行带来了隐患,快速准确的振荡源定位是消除振荡、保障系统安全稳定运行的重要基础。为提升子站与主站之间数据传输效率、解决信息缺失等问题,本文提出一种基于图卷积神经网络与... 新能源发电机组大规模接入电网引发的宽频振荡给电网稳定运行带来了隐患,快速准确的振荡源定位是消除振荡、保障系统安全稳定运行的重要基础。为提升子站与主站之间数据传输效率、解决信息缺失等问题,本文提出一种基于图卷积神经网络与长短时记忆网络结合的输电网宽频振荡定位模型。首先通过对电网运行数据进行高频采样,并经压缩感知稀疏化处理后得到压缩振荡数据;进一步将输电网拓扑结构和部分节点的振荡采样数据相结合,通过基于图卷积神经网络的全局振荡信息生成模型补全未知节点信息,形成节点特征矩阵;最后根据全网各节点振荡特征矩阵,采用长短时记忆网络算法实现振荡源定位。基于含直驱风电机组的四机两区域仿真模型验证,结果表明GCN补全数据的均方根误差(0.0319)显著优于对比模型,且所提模型定位准确率达96.93%,尤其对风电机组振荡源定位精度达99%,显著高于GCN-SVM(94.22%)等基准方法,证实该方法在部分可观条件下能有效融合拓扑与时空特征,为高比例新能源电网安全稳定运行提供可靠技术支撑。运用MATLAB/Simulink制作样本数据集,通过算例仿真验证了文中所提出的宽频振荡定位模型的可行性与有效性。 展开更多
关键词 宽频振荡 振荡源定位 振荡信息生成模型 图卷积神经网络 长短时记忆网络 特征矩阵
在线阅读 下载PDF
基于蜣螂优化算法-双向长短时记忆网络的隧道软弱围岩变形预测
4
作者 张建 《地球科学与环境学报》 北大核心 2025年第4期634-645,共12页
隧道软弱围岩变形预测是确保隧道建设及施工运营安全等诸多环节中的核心要素。目前隧道软弱围岩变形预测主要依托围岩变形监测数据,而监测数据统计分析结果的可靠性、鲁棒性及泛化性依然不能满足工程建设的要求。针对该问题,对比LSTM、B... 隧道软弱围岩变形预测是确保隧道建设及施工运营安全等诸多环节中的核心要素。目前隧道软弱围岩变形预测主要依托围岩变形监测数据,而监测数据统计分析结果的可靠性、鲁棒性及泛化性依然不能满足工程建设的要求。针对该问题,对比LSTM、BiLSTM、CNN-LSTM、GRU、CNN-RNN模型的准确性、可靠性和稳定性,优选出BiLSTM模型为初步预测模型;考虑双向长短时记忆(BiLSTM)网络的灵活交互性和蜣螂优化(DBO)算法的数据驱动优势,构建基于深度学习的隧道软弱围岩变形预测模型——DBO-BiLSTM模型;最后,以西十高速铁路云岭一号隧道断面软弱围岩为案例,运用DBO-BiLSTM模型和BiLSTM模型对该隧道软弱围岩变形进行预测,并与监测数据进行对比。结果表明:DBO-BiLSTM模型较BiLSTM模型预测结果更优,其均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、平均百分比误差(MAPE)、判定系数(R^(2))分别为0.0016、0.0406、0.0318、1.43%、0.9985;云岭一号隧道软弱围岩变形情况均经历了先陡增后缓增、最终趋于稳定的过程,拱顶沉降最大累计变形量为14.79 mm,水平收敛最大累计变形量为16.80 mm。 展开更多
关键词 隧道工程 围岩 变形预测 DBO-BiLSTM模型 深度学习 长短时记忆网络 蜣螂优化算法
在线阅读 下载PDF
基于长短时记忆网络的数控设备剩余寿命预测方法
5
作者 田丽晶 薛建华 何罗宁 《机床与液压》 北大核心 2025年第16期76-84,共9页
数控设备的可靠运行对制造业至关重要,其退化过程和剩余寿命预测是设备健康管理(PHM)的关键问题。从时间序列的角度分析数控设备的状态监测信息,提出一种基于信号处理和长短时记忆网络(LSTM)的数控设备剩余寿命预测方法。利用信号处理... 数控设备的可靠运行对制造业至关重要,其退化过程和剩余寿命预测是设备健康管理(PHM)的关键问题。从时间序列的角度分析数控设备的状态监测信息,提出一种基于信号处理和长短时记忆网络(LSTM)的数控设备剩余寿命预测方法。利用信号处理技术提取振动信号的时频域退化特征,通过Spearman相关性分析和核主成分分析(KPCA)进行特征选择和降维。引入退化程度指标D来量化设备的退化状态。在此基础上,构建基于长短时记忆(LSTM)网络的退化过程演变模型,用于预测退化程度指标,并结合线性回归模型实现了设备剩余寿命的估计。结果表明:所提LSTM模型能够有效捕捉设备退化的长期趋势和复杂动态特征,结合线性回归模型实现了设备剩余寿命的高精度估计。最后,利用XJTU-SY轴承退化数据集进行实验分析,通过对不同工况和故障类型的数据集进行退化趋势可视化和剩余寿命预测,验证了所提方法的有效性,为数控机床的可靠性研究提供了新思路。 展开更多
关键词 数控设备 退化模型 剩余寿命预测 长短时记忆网络
在线阅读 下载PDF
基于长短时记忆网络和生成对抗网络的VRB储能系统虚假数据注入攻击检测 被引量:8
6
作者 陆鹏 付华 卢万杰 《电网技术》 EI CSCD 北大核心 2024年第1期383-393,共11页
随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据... 随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据注入攻击导致的异常数据检测问题,提出一种基于长短时记忆网络和生成对抗网络的检测方法。首先,建立了VRB等效电路模型和虚假数据注入攻击模型;然后,通过训练长短时记忆网络和生成对抗网络组成的循环网络,将长短时记忆神经网络嵌入生成对抗网络框架作为生成器和鉴别器来分析电池时序数据,通过判别网络中的判别损失误差和生成网络中的重构残差得到异常损失进行综合判断;最后,以CEC-VRB-5kW型号电池为对象,并构造不同强度的虚假数据攻击进行实验,验证检测方法的准确性与可行性。结果表明,与经典循环神经网络、随机森林、自编码器、长短时记忆网络检测方法进行对比,所提方法具有较高的检测精度,在VRB储能系统荷电状态估计中能够有效辨识虚假数据攻击。 展开更多
关键词 长短时记忆网络 生成对抗网络 储能系统 SOC估计 虚假数据注入攻击
在线阅读 下载PDF
基于长短时记忆网络的山区中小流域降雨径流模拟 被引量:6
7
作者 张锦堂 任明磊 +4 位作者 李京兵 唐榕 钟小燕 王刚 王玉丽 《水电能源科学》 北大核心 2024年第8期33-37,共5页
洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪... 洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪水模拟效果。结果表明,考虑降雨输入的空间差异可提升深度学习模型降雨径流模拟预测性能,且长短时记忆网络能够取得优于传统人工神经网络的精度;长短时记忆网络模型有效建立了流域降雨与径流间的复杂非线性关系,模型在所选流域内场次洪水的峰值模拟效果较好,训练、测试集场次洪水峰值合格率均在90%以上;长短时记忆网络内部结构特征与流域水文过程具有较好的相似性,对山区中小流域暴雨洪水非线性关系拟合效果突出。 展开更多
关键词 山丘区 长短时记忆网络 中小河流 降雨径流模拟
在线阅读 下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型 被引量:11
8
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
在线阅读 下载PDF
基于卷积长短时记忆网络的短时公交客流量预测 被引量:6
9
作者 陈静 张昭冲 +2 位作者 王琳凯 安脉 王伟 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期476-486,共11页
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔... 针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。 展开更多
关键词 卷积神经网络 长短时记忆网络 空数据预测 K-MEANS聚类 客流量预测
在线阅读 下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究 被引量:1
10
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短时记忆网络(BiLSTM)
在线阅读 下载PDF
基于长短时记忆网络的顶托影响下干支流洪水模拟研究 被引量:1
11
作者 张艺佳 吴剑 +2 位作者 彭勇 丁勇 郭家园 《水电能源科学》 北大核心 2024年第10期24-28,共5页
干支流交汇河段易发生洪水相互顶托现象,造成河段持续处于高水位,极大地增加了洪水模拟的难度。以三岔河口上游受顶托影响显著的嫩江大赉站为研究对象,首先分析识别大赉站历史洪水的顶托关系,并根据洪水顶托关系划分洪水类型;在此基础... 干支流交汇河段易发生洪水相互顶托现象,造成河段持续处于高水位,极大地增加了洪水模拟的难度。以三岔河口上游受顶托影响显著的嫩江大赉站为研究对象,首先分析识别大赉站历史洪水的顶托关系,并根据洪水顶托关系划分洪水类型;在此基础上采用长短时记忆(LSTM)网络建立洪水模拟模型,评估模型的模拟效果。结果表明,采用流量、水位变化率可以较为有效地识别洪水顶托关系,历史上嫩江受到洪水顶托影响的年份较多;LSTM模型输入中仅考虑上游来水对大赉站流量模拟精度影响相对较小,而对水位模拟精度影响显著;考虑顶托影响的LSTM模型对大赉站的流量、水位模拟精度均较高。可见,所构建的LSTM模型能较准确地模拟出顶托影响下的大赉站洪水过程,为类似流域或站点的洪水模拟提供参考。 展开更多
关键词 机器学习 长短时记忆网络 洪水顶托 洪水模拟
在线阅读 下载PDF
基于张量空谱卷积长短时记忆网络的遥感图像分类模型 被引量:1
12
作者 胡文帅 李伟 +2 位作者 李恒超 张蒙蒙 陶然 《指挥与控制学报》 CSCD 北大核心 2024年第4期458-468,共11页
基于遥感图像的地物要素分类与提取是实现数字化战场建设、智能化战场感知的关键支撑技术之一。实际应用平台运算资源有限、样本匮乏导致训练不充分等制约深度神经网络的遥感图像地物分类效果。基于张量链式分解和权重共享,设计空谱卷... 基于遥感图像的地物要素分类与提取是实现数字化战场建设、智能化战场感知的关键支撑技术之一。实际应用平台运算资源有限、样本匮乏导致训练不充分等制约深度神经网络的遥感图像地物分类效果。基于张量链式分解和权重共享,设计空谱卷积长短时记忆单元的两种张量扩展结构,提出轻量级张量空谱卷积长短时记忆网络用于遥感图像分类。在两个公开高光谱遥感图像数据集进行实验,该算法仅需0.34MB存储空间,较同类方法实现更优分类性能。 展开更多
关键词 遥感图像 网络轻量化 卷积长短时记忆网络 张量分解 精细分类
在线阅读 下载PDF
联合变分模态分解和长短时记忆网络的锂离子电池健康状态估计 被引量:1
13
作者 陈红霞 丁国荣 +1 位作者 陈贵词 王文波 《电源学报》 CSCD 北大核心 2024年第S01期89-97,共9页
准确估计和预测锂离子电池的健康状态SOH(state-of-health)对新能源领域的发展至关重要,因此提出1种基于变分模态分解VMD(variational mode decomposition)和长短时记忆LSTM(long short-term memory)网络的锂离子电池容量衰减预测模型... 准确估计和预测锂离子电池的健康状态SOH(state-of-health)对新能源领域的发展至关重要,因此提出1种基于变分模态分解VMD(variational mode decomposition)和长短时记忆LSTM(long short-term memory)网络的锂离子电池容量衰减预测模型。首先采用VMD方法将原始电池容量衰减序列分解成比较单一的固有模态分量IMF(intrinsic mode function)序列,然后应用LSTM对分解得到的一系列IMF分量进行训练预测,最后对各IMF分量的预测值进行有效集成得到电池容量衰减序列的最终预测结果。基于美国国家航天局NASA(National Aeronautics and Space Administration)锂离子电池数据集选取的4块电池的放电容量衰减序列进行实验对比分析,结果表明:相较于LSTM、BiLSTM、EMD-LSTM、EMD-BiLSTM及CEEMDAN-LSTM方法,所提方法可以明显降低序列的复杂度,减少各IMF分量的模态混叠现象,具有很高的预测精度,优于其他预测模型,预测的最大平均绝对误差不超过5%,均方根误差和平均绝对百分比误差控制在4%之内。 展开更多
关键词 锂离子电池健康状态估计 变分模态分解 长短时记忆网络
在线阅读 下载PDF
基于优化长短时记忆网络的海面微弱目标检测 被引量:1
14
作者 叶如 行鸿彦 周星 《探测与控制学报》 CSCD 北大核心 2024年第5期57-63,70,共8页
针对强混沌背景噪声下传统方法难以检测微弱目标信号的问题,研究了混沌相空间重构理论和麻雀寻优算法,提出一种基于优化长短时记忆网络(LSTM)的混沌背景下微弱信号检测方法。利用麻雀搜索算法优化LSTM模型参数,提高模型预测精度,降低目... 针对强混沌背景噪声下传统方法难以检测微弱目标信号的问题,研究了混沌相空间重构理论和麻雀寻优算法,提出一种基于优化长短时记忆网络(LSTM)的混沌背景下微弱信号检测方法。利用麻雀搜索算法优化LSTM模型参数,提高模型预测精度,降低目标检测门限,结合LSTM模型进行单步预测,利用预测误差从强海杂波背景下检测出微弱目标信号。以Lorenz混沌系统作为混沌背景进行仿真实验,对叠加的小信号进行检测,结果表明,该方法能够有效地检测微弱信号,其预测的均方根误差0.00171(信噪比为-137.707 dB),相较于传统神经网络预测模型、LSTM预测模型、GA-LSTM预测模型、PSO-LSTM预测模型均有显著提升。利用IPIX雷达信号进行预测实验,进一步验证了该方法的有效性。 展开更多
关键词 微弱信号检测 长短时记忆网络 麻雀寻优算法 海杂波
在线阅读 下载PDF
基于长短时记忆网络的结构动态载荷预测方法
15
作者 樊昱玮 郭腾博 +3 位作者 李哲 洪良友 刘超 蒋东翔 《中国舰船研究》 CSCD 北大核心 2024年第6期228-236,共9页
[目的]针对传统代理模型无法处理具有时间依赖性的动态过程和异构数据的问题,提出一种基于长短时记忆网络(LSTM)的动态载荷代理模型方法。[方法]代理模型包含载荷特征编码和载荷响应解码2个模块。首先,通过载荷特征编码模块的LSTM对动... [目的]针对传统代理模型无法处理具有时间依赖性的动态过程和异构数据的问题,提出一种基于长短时记忆网络(LSTM)的动态载荷代理模型方法。[方法]代理模型包含载荷特征编码和载荷响应解码2个模块。首先,通过载荷特征编码模块的LSTM对动态外载荷时间序列进行特征提取;然后,将外载荷时序特征与结构参数特征进行融合,由载荷解码模块的LSTM进一步进行特征提取并生成最终输出,从而综合考虑动态外载荷时间序列和结构参数一维特征的异构数据输入,预测结构内力响应时间历程;最后,在有限元仿真数据集上对模型进行精度评估,并与其他代理模型方法进行对比。[结果]结果显示,该动态载荷代理模型的平均精度可达98%,高于其他对比方法,且计算速度相较于有限元方法更快。[结论]所提方法可解决时序-非时序异构数据的代理模型问题,具有精度高、效率高的优点,在快速迭代计算场景下能够发挥较大作用。 展开更多
关键词 结构优化 动态载荷 人工智能 代理模型 深度学习 长短时记忆网络
在线阅读 下载PDF
基于核主成分分析与长短时记忆网络的水电机组监测预警
16
作者 王勇飞 李晓飞 +3 位作者 孙雨欣 张健 郭鹏程 王仁本 《振动与冲击》 EI CSCD 北大核心 2024年第24期287-294,共8页
水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动... 水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动信号数据融合研究,通过KPCA方法去除了多通道信号间冗余,实现了原始数据的压缩表征,并获得了机组在稳态运行工况的T2(Hotelling’s Fsquared)和SPE(square prediction error)控制限,将其作为预警阈值对融合后信号进行异常状态识别。以LSTM为基础构建了时序预测模型,结合异常状态识别结果实现了水电机组状态预警功能。研究通过案例实施验证了所提方法的有效性,并与KPCA-RNN和KPCA-Informer等模型进行了对比,所提出KPCA-LSTM模型预测结果的R2系数大于0.97,预测偏差处于极低水平,性能优于对比模型。 展开更多
关键词 水电机组 长短时记忆网络(LSTM) 核主成分分析(KPCA) 预警阈值
在线阅读 下载PDF
基于孪生网络和长短时记忆网络结合的配电网短期负荷预测 被引量:36
17
作者 葛磊蛟 赵康 +2 位作者 孙永辉 王尧 牛峰 《电力系统自动化》 EI CSCD 北大核心 2021年第23期41-50,共10页
保证数据驱动型配电网短期负荷预测精准的关键是选取合适的相似日数据集和构建合理的日负荷预测模型。文中研究了一种基于孪生网络(SN)和长短时记忆(LSTM)网络相结合的配电网短期负荷预测模型。基于配电网负荷相似日的影响因素具有多样... 保证数据驱动型配电网短期负荷预测精准的关键是选取合适的相似日数据集和构建合理的日负荷预测模型。文中研究了一种基于孪生网络(SN)和长短时记忆(LSTM)网络相结合的配电网短期负荷预测模型。基于配电网负荷相似日的影响因素具有多样化、强随机性的特点,利用SN两个输入权重共享的特点对历史负荷数据进行分析,进而对待测日的特征进行分类,以完成相似日数据选取。此外,利用灰狼优化算法全局搜索能力强、收敛速度快等特点,对基于LSTM网络的配电网短期负荷预测模型进行参数优化。最后,以某一个区域配电网的实际数据为例,验证上述预测方法的准确性与鲁棒性,与LSTM网络、基于粒子群优化的LSTM网络、支持向量机等方法对比可知,所提方法具有较高的准确度和计算效率。 展开更多
关键词 配电网 孪生网络 灰狼优化算法 长短时记忆网络 负荷预测
在线阅读 下载PDF
基于长短时记忆网络的人体姿态检测方法 被引量:20
18
作者 郑毅 李凤 +1 位作者 张丽 刘守印 《计算机应用》 CSCD 北大核心 2018年第6期1568-1574,共7页
针对在循环神经网络(RNN)网络结构下较为遥远的历史信号无法传递至当前时刻的问题,长短时记忆(LSTM)网络作为RNN的一种变体被提出,在继承RNN对时间序列优秀的记忆能力的前提下,LSTM克服了这种时间序列的长期依赖问题,并在自然语言处理... 针对在循环神经网络(RNN)网络结构下较为遥远的历史信号无法传递至当前时刻的问题,长短时记忆(LSTM)网络作为RNN的一种变体被提出,在继承RNN对时间序列优秀的记忆能力的前提下,LSTM克服了这种时间序列的长期依赖问题,并在自然语言处理与语音识别领域有较好的表现。对于人体行为动作中也存在作为时间序列的长期依赖问题与使用传统滑窗算法采集数据时造成的无法实时检测的问题,将LSTM扩展应用到人体姿态检测,提出了基于LSTM的人体姿态检测方法。通过目前智能手机中一般都带有的加速度传感器、陀螺仪、气压计和方向传感器实时采集的时序数据,制作了包含3 336条带有人工标注数据的人体姿态数据集,对行走、奔跑、上楼梯、下楼梯和平静五种日常持续性行为姿态与跌倒、起立、坐下和跳跃这四个突发行为姿态进行预测分类。对比LSTM网络与该研究领域内常用的浅层学习算法、深度学习全连接神经网络与卷积神经网络,实验结果表明,所提方法使用端对端的深度学习的方法相比基于所制作数据集的人体姿态检测算法模型的正确率提高了4.49个百分点,验证了该网络结构的泛化能力且更适合姿态检测。 展开更多
关键词 长短时记忆网络 人体姿态 多传感器 序数据 深度学习
在线阅读 下载PDF
基于趋势指标与长短时记忆网络的电力市场日前电价预测 被引量:14
19
作者 郭贺宏 武灵耀 +3 位作者 赵庆生 梁定康 王旭平 程昱舒 《智慧电力》 北大核心 2022年第9期97-103,共7页
为提高电力市场日前电价的预测精度,提出一种基于趋势指标与长短时记忆网络(LSTM)的日前电价预测模型。首先,计算日前电价的随机指标(KDJ)与异同移动平均线指标(MACD),挖掘电价的内在规律信息;然后,将计算出的趋势指标与电价信息输入LS... 为提高电力市场日前电价的预测精度,提出一种基于趋势指标与长短时记忆网络(LSTM)的日前电价预测模型。首先,计算日前电价的随机指标(KDJ)与异同移动平均线指标(MACD),挖掘电价的内在规律信息;然后,将计算出的趋势指标与电价信息输入LSTM,对电力市场日前电价进行预测;最后,利用电力市场日前电价数据进行验证。算例分析表明该模型相比反向传播神经网络(BPNN)、LSTM和门控循环单元网络(GRU)等模型预测精度更高。 展开更多
关键词 长短时记忆网络 KDJ指标 MACD指标 电力市场 日前电价
在线阅读 下载PDF
结合知识图谱与双向长短时记忆网络的小麦条锈病预测 被引量:30
20
作者 张善文 王振 王祖良 《农业工程学报》 EI CAS CSCD 北大核心 2020年第12期172-178,共7页
针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各... 针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。 展开更多
关键词 病害 预测 模型 小麦条锈病预测 知识图谱 长短记忆 双向长短时记忆网络(Bi-LSTM)
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部