期刊文献+
共找到263篇文章
< 1 2 14 >
每页显示 20 50 100
基于长短时记忆神经网络的励磁涌流与故障电流识别方法 被引量:2
1
作者 张国栋 刘凯 +2 位作者 蒲海涛 姚福强 张帅帅 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期730-738,共9页
变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真... 变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真产生大量三相电流瞬时采样数据作为训练神经网络的样本集;然后,利用Keras平台搭建LSTM神经网络模型并完成训练;最后,利用新的仿真数据和现场故障录波数据对训练好的LSTM神经网络进行测试.结果表明LSTM神经网络可以快速准确地区分各种情况下的励磁涌流和故障电流,从而证实该方法的有效性. 展开更多
关键词 变压器差动保护 长短时记忆神经网络 励磁涌流识别 故障电流识别
在线阅读 下载PDF
基于时空长短时记忆神经网络的地基云图预测算法 被引量:1
2
作者 吴现 吐松江·卡日 +3 位作者 王海龙 马小晶 李振恩 邵罗 《计算机工程》 CAS CSCD 北大核心 2024年第3期298-305,共8页
针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信... 针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信息进行多分支获取,一部分使用ST-LSTM神经网络提取不同帧之间的时空特征,另一部分将图像序列进行分解,并通过基于门控机制的记忆融合网络来获取分解后图像中的结构细节信息;最后将得到的分支特征进行组合后经过解码网络输出最终的预测视频流。在地基云图、Moving MNIST和Human 3.6M数据集上的实验结果表明,在图像预测准确率、结构细节信息保留效果以及人眼主观感受上,该预测模型均优于对比模型。与基准模型TaylorNet相比,所提模型在Moving MNIST数据集上均方误差指标和平均绝对误差指标分别降低15.7%和11.8%,在地基云图数据集上,其结构相似性指标与峰值信噪比指标分别提升1%和3.2%,且生成的视频流数据更为清晰,能够更准确地描述云层未来的运动状况,从而更可靠地预测光伏电站未来的输出功率。 展开更多
关键词 深度学习 视频预测 地基云图 麦克劳林展开 长短时记忆神经网络
在线阅读 下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测 被引量:1
3
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短时记忆神经网络 改进灰狼算法 自适应位置更新
在线阅读 下载PDF
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:2
4
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短时记忆神经网络(LSTM) 二次多项式模型 QP-LSTM模型 multi-GNSS卫星钟差预报
在线阅读 下载PDF
阀控液压马达位置伺服系统长短时记忆神经网络预测抗扰反步控制 被引量:1
5
作者 柴凌云 栾海英 +2 位作者 刘增元 沈洲 任翔 《液压与气动》 北大核心 2024年第8期128-136,共9页
针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系... 针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系统中难以建模的摩擦非线性,将其视为扰动,通过设计扩张状态观测器进行估测,并使用反步法对估测得到的总扰动进行补偿。最后,在Simulink中搭建长短时记忆神经网络预测抗扰反步控制算法进行仿真验证,并与径向基函数滑模控制算法、反步控制算法和自抗扰控制算法进行对比,证明其在对含有时滞及摩擦非线性的阀控液压马达位置伺服系统进行控制时,具有较快的响应速度及较好的跟踪性能。 展开更多
关键词 阀控液压马达位置系统 长短时记忆神经网络 反步控制 扩张状态观测器
在线阅读 下载PDF
基于图嵌入长短时记忆神经网络的非线性动态过程监控与诊断
6
作者 宋万军 赵丰年 +1 位作者 白龙 周建国 《控制工程》 CSCD 北大核心 2024年第4期601-607,共7页
针对复杂工业过程存在的非线性、动态性,以及故障标签难获取等特征,提出一种图嵌入长短时记忆神经网络在线监控与故障诊断方法。首先,对正常工况下采集的多维时序数据进行图嵌入,获得结构信息。其次,采用图注意力神经网络融合结构信息,... 针对复杂工业过程存在的非线性、动态性,以及故障标签难获取等特征,提出一种图嵌入长短时记忆神经网络在线监控与故障诊断方法。首先,对正常工况下采集的多维时序数据进行图嵌入,获得结构信息。其次,采用图注意力神经网络融合结构信息,并将融合后的结构信息输入用于预测的长短时记忆神经网络中。最后,提出一种新的基于预测误差指标的非线性动态过程在线监控方法和基于因果分析图的故障诊断方法。采用田纳西-伊斯曼数据集进行实验验证,结果表明了所提方法的有效性。 展开更多
关键词 过程监控 故障诊断 图嵌入 长短时记忆神经网络
在线阅读 下载PDF
基于量子加权长短时记忆神经网络的状态退化趋势预测 被引量:18
7
作者 李锋 陈勇 +2 位作者 向往 王家序 汤宝平 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第7期217-225,共9页
提出基于量子加权长短时记忆神经网络(QWLSTMNN)的旋转机械状态退化趋势预测方法。首先采用小波包能量熵误差构建状态退化特征集,然后将该特征集输入QWLSTMNN以完成旋转机械状态退化趋势预测。在QWLSTMNN中,将输入层权值量子位扩展到... 提出基于量子加权长短时记忆神经网络(QWLSTMNN)的旋转机械状态退化趋势预测方法。首先采用小波包能量熵误差构建状态退化特征集,然后将该特征集输入QWLSTMNN以完成旋转机械状态退化趋势预测。在QWLSTMNN中,将输入层权值量子位扩展到隐层以获取额外的梯度信息;利用隐层权值量子位的反馈信息以获取输入序列的全部记忆,改善了原长短时记忆神经网络(LSTMNN)的非线性逼近能力和泛化性能,使所提出的状态退化趋势预测方法具有较高的预测精度;另外,采用新型的基于量子相移门和量子梯度下降法的学习算法以实现QWLSTMNN的网络量子参数(即权值量子位和活性值量子位)的快速更新,提高了网络收敛速度,使所提出的预测方法具有较高的计算效率。滚动轴承状态退化趋势预测实例验证了该方法的有效性。 展开更多
关键词 量子加权长短时记忆神经网络 量子计算 小波包能量熵误差 趋势预测 旋转机械
在线阅读 下载PDF
基于长短时记忆神经网络的潜油电泵故障预警 被引量:6
8
作者 刘广孚 姜霄 +3 位作者 杜玉龙 郭亮 王赛峰 鄢志丹 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期170-176,共7页
以潜油电泵机组的运行电流为主要判别依据,将长短时记忆神经网络应用于潜油电泵运行状态预测中,对于特征不明显的故障类型,利用潜油电泵井运行电压、运行电流、功率、油压、井口温度和瞬时流量数据预测下一时刻的电流值,并利用单分类支... 以潜油电泵机组的运行电流为主要判别依据,将长短时记忆神经网络应用于潜油电泵运行状态预测中,对于特征不明显的故障类型,利用潜油电泵井运行电压、运行电流、功率、油压、井口温度和瞬时流量数据预测下一时刻的电流值,并利用单分类支持向量机模型来预判潜油电泵机组的运行状态,从而实现潜油电泵的故障预警。最后,利用实际生产数据对模型进行验证。结果表明,所提方法预测准确度较高,可将报警时间提前1 h,实现故障的预警及诊断。 展开更多
关键词 潜油电泵 长短时记忆神经网络 单分类支持向量机 故障预警
在线阅读 下载PDF
基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测 被引量:6
9
作者 任妮 鲍彤 +2 位作者 刘杨 荀广连 蒋永年 《江苏农业学报》 CSCD 北大核心 2021年第2期426-434,共9页
为准确预测蟹塘溶解氧质量浓度,及时掌握溶解氧质量浓度的变化趋势,提前采取防控措施从而降低河蟹养殖风险,提出了一种基于粒子群优化算法(PSO)和长短时记忆神经网络(LSTM)的蟹塘溶解氧质量浓度预测模型,采用PSO算法优化LSTM模型参数后... 为准确预测蟹塘溶解氧质量浓度,及时掌握溶解氧质量浓度的变化趋势,提前采取防控措施从而降低河蟹养殖风险,提出了一种基于粒子群优化算法(PSO)和长短时记忆神经网络(LSTM)的蟹塘溶解氧质量浓度预测模型,采用PSO算法优化LSTM模型参数后对蟹塘溶解氧质量浓度进行预测。结果表明,PSO-LSTM模型不仅整体优于ARIMA模型,相较于其他LSTM模型也有更高的预测精度,在连续10个时间点的预测中相比于LDO-LSTM、LSTM和ARIMA模型平均百分误差分别降低了2.55%、1.891%和4.055%。说明PSO-LSTM模型在蟹塘溶解氧质量浓度预测中具有良好的准确性和稳定性,可以为河蟹养殖中水质精准预测与调控提供参考。 展开更多
关键词 溶解氧预测 河蟹养殖 粒子群优化算法 长短时记忆神经网络
在线阅读 下载PDF
冲击噪声下基于演化长短时记忆神经网络的调制信号识别 被引量:4
10
作者 高洪元 王世豪 +2 位作者 程建华 郭瑞晨 张志伟 《智能系统学报》 CSCD 北大核心 2023年第4期676-687,共12页
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut... 为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。 展开更多
关键词 调制信号识别 冲击噪声 卷积神经网络 量子旗鱼优化算法 长短时记忆神经网络 稳定分布 超参数 傅里叶变换
在线阅读 下载PDF
强化学习长短时记忆神经网络用于状态预测 被引量:1
11
作者 李锋 陈勇 +1 位作者 汤宝平 王家序 《振动.测试与诊断》 EI CSCD 北大核心 2020年第5期895-903,1021,1022,共11页
提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线... 提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network,简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。 展开更多
关键词 强化学习 长短时记忆神经网络 奇异谱熵 趋势预测 旋转机械
在线阅读 下载PDF
用于关系抽取的注意力图长短时记忆神经网络 被引量:10
12
作者 张勇 高大林 +1 位作者 巩敦卫 陶一凡 《智能系统学报》 CSCD 北大核心 2021年第3期518-527,共10页
关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长... 关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长短时记忆神经网络(attention graph long short term memory neural network,AGLSTM)。该模型采用一种软修剪策略自动学习对关系抽取有用的句子结构信息;通过引入注意力机制,结合句法图信息学习句子的结构特征;并设计一种新型的图长短时记忆神经网络,使得模型能够更好地融合句法图信息和句子的时序信息。与10种典型的关系抽取方法进行对比,实验验证了该模型的优异性能。 展开更多
关键词 关系抽取 句子结构树 句法图 神经网络 注意力图长短时记忆神经网络 软修剪策略 注意力机制 长短时记忆神经网络
在线阅读 下载PDF
基于串级双向长短时记忆神经网络的测井数据重构 被引量:6
13
作者 周伟 赵海航 +2 位作者 蒋云凤 易军 赖富强 《石油地球物理勘探》 EI CSCD 北大核心 2022年第6期1473-1480,I0009,共9页
测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提... 测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提出一种基于串级双向长短时记忆神经网络(CBi-LSTM)的测井数据重构方法,在不增加额外测量成本的情况下,充分考虑缺失数据点的前趋与后继之间的双向关联性及测井曲线之间的相关性,利用串级系统将所获估计值与已知测井曲线合并为新的输入,采用迭代更新策略完成对缺失数据块的重构。对苏里格气田4口井的测井数据进行补全重构实验,所得结果表明:文中测井数据重构方法具有较高精度,同时所用模型具有更强的鲁棒性和泛化能力。 展开更多
关键词 测井曲线 重构 长短时记忆神经网络 串级双向长短时记忆神经网络
在线阅读 下载PDF
考虑温度模糊化的多层长短时记忆神经网络短期负荷预测 被引量:29
14
作者 郑瑞骁 张姝 +1 位作者 肖先勇 汪颖 《电力自动化设备》 EI CSCD 北大核心 2020年第10期181-186,共6页
智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平... 智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平均温度进行模糊化处理,减小夏季温度波动性对负荷预测的影响;建立含3层隐藏层的长短时记忆神经网络(LSTM)预测网络,并利用适应性矩估计(Adam)优化算法提高LSTM梯度参数的自适应性学习能力。利用西南某地区2018年6月至8月的实测温度和负荷数据进行验证,负荷预测结果表明,ML-LSTM模型比BP神经网络和支持向量机的负荷预测精度更高,且温度的模糊化处理提高了模型的泛化性。 展开更多
关键词 短期负荷预测 多层长短时记忆神经网络 温度模糊化 Adam算法
在线阅读 下载PDF
基于长短时记忆神经网络的生猪价格预测模型 被引量:14
15
作者 刘怡然 王东杰 +1 位作者 邓雪峰 刘振宇 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2021年第2期190-197,共8页
生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.... 生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.首先对生猪价格序列进行预处理和分析;然后采用萤火虫算法优化LSTM的模型参数,根据得到的最优参数建立了3种预测模型,分别能够对未来1、2、8周的生猪价格进行预测.结果表明:文中方法的平均绝对误差、均方根误差和确定系数分别为1.4558、4.9102和92.57%,相比传统的浅层预测模型和未经优化的LSTM模型精确度更高,能够解决生猪价格周期长短变化带来的预测困难,适合对生猪价格以及与其有相似特点的农产品价格序列预测. 展开更多
关键词 生猪价格 深度学习 预测 长短时记忆神经网络 萤火虫算法
在线阅读 下载PDF
基于改进长短时记忆神经网络-自适应增强算法的多天气车辆分类方法 被引量:4
16
作者 李达 张照生 +2 位作者 刘鹏 王震坡 董昊天 《汽车工程》 EI CSCD 北大核心 2020年第9期1248-1255,共8页
针对目前国内外车辆分类效果不理想和受天气影响较大的问题,本文中提出一种基于改进长短时记忆神经网络自适应增强算法(LSTM-AdaBoost)的多天气车辆分类方法,并提出一种“多层网格法”以准确地确定LSTM的超参数。首先建立地磁车辆检测... 针对目前国内外车辆分类效果不理想和受天气影响较大的问题,本文中提出一种基于改进长短时记忆神经网络自适应增强算法(LSTM-AdaBoost)的多天气车辆分类方法,并提出一种“多层网格法”以准确地确定LSTM的超参数。首先建立地磁车辆检测系统平台和车辆分类方法,然后分析基于改进LSTM-AdaBoost的车辆分类结果,并对不同车辆分类方法和不同天气下的分类准确率进行了对比。结果表明,与最邻近结点算法和反向传播神经网络算法相比,本文所提出的方法具有较高的准确率,最高分类准确率为92.2%。暴雨、雾霾和晴天3种天气中,暴雨时的分类准确率最低,但差别不大,最大相差3.9个百分点。 展开更多
关键词 车辆分类 地磁信号 长短时记忆神经网络-自适应增强算法 多天气
在线阅读 下载PDF
基于长短时记忆神经网络的硬件木马检测 被引量:7
17
作者 胡涛 佃松宜 蒋荣华 《计算机工程》 CAS CSCD 北大核心 2020年第7期110-115,共6页
硬件木马给集成电路芯片的可靠性带来巨大威胁,为此,提出一种基于主成分分析(PCA)和长短时记忆(LSTM)神经网络的硬件木马检测方法。利用PCA提取侧信道信息中的电流特征向量,并利用该特征向量训练LSTM神经网络分类器,使该分类器达到识别... 硬件木马给集成电路芯片的可靠性带来巨大威胁,为此,提出一种基于主成分分析(PCA)和长短时记忆(LSTM)神经网络的硬件木马检测方法。利用PCA提取侧信道信息中的电流特征向量,并利用该特征向量训练LSTM神经网络分类器,使该分类器达到识别硬件木马的目的。实验结果表明,该方法能对木马进行有效识别,且能检测出木马面积占总电路面积比为0.74%的硬件木马。 展开更多
关键词 硬件木马检测 集成电路 旁路信息 主成分分析 长短时记忆神经网络
在线阅读 下载PDF
基于深度长短时记忆神经网络模型的心律失常检测算法 被引量:6
18
作者 杨朔 蒲宝明 +2 位作者 李相泽 王帅 常战国 《计算机应用》 CSCD 北大核心 2019年第3期930-934,共5页
针对传统基于形态特征的心电检测算法存在特征提取不准确和高复杂性等问题,提出了一种多层的长短时记忆(LSTM)神经网络结构。结合传统LSTM模型在时序数据处理上的优势,该模型增加了反向和深度计算,避免了人工提取波形特征,提高了网络的... 针对传统基于形态特征的心电检测算法存在特征提取不准确和高复杂性等问题,提出了一种多层的长短时记忆(LSTM)神经网络结构。结合传统LSTM模型在时序数据处理上的优势,该模型增加了反向和深度计算,避免了人工提取波形特征,提高了网络的学习能力。通过给定心拍序列和分类标签进行监督学习,然后实现对未知心拍的心律失常检测。通过对MIT-BIH数据库中的心律失常数据集进行实验验证,模型的总体准确率为98.34%。相比支持向量机(SVM),该模型的准确率和F1值均有提高。 展开更多
关键词 心律失常 心电 长短时记忆神经网络 序数据 支持向量机
在线阅读 下载PDF
长短时记忆神经网络在地电场数据处理中的应用 被引量:28
19
作者 汪凯翔 黄清华 吴思弘 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2020年第8期3015-3024,共10页
作为深度学习方法的一种,长短时记忆神经网络(LSTM)是一种信号处理的重要方法.本文基于实际观测地电场数据来合成训练集,对特定结构的长短时记忆神经网络进行训练,将训练所得网络对测试集数据进行测试后,将网络应用至实际观测数据.结果... 作为深度学习方法的一种,长短时记忆神经网络(LSTM)是一种信号处理的重要方法.本文基于实际观测地电场数据来合成训练集,对特定结构的长短时记忆神经网络进行训练,将训练所得网络对测试集数据进行测试后,将网络应用至实际观测数据.结果显示,经过训练的网络很好地学到了训练集样本的特征,对测试集数据的信噪比压制了约20 dB,并过滤了人为添加的特定频率的干扰成分,对实际观测数据处理后得到明显的日变、半日变以及半月变、月变、半年变、年变等潮汐响应,表明长短时记忆神经网络可以有效应用于地电场数据处理研究. 展开更多
关键词 地电场 长短时记忆神经网络 信号处理 潮汐响应
在线阅读 下载PDF
基于双向长短时记忆神经网络的步态时空参数脑肌电解码方法 被引量:3
20
作者 魏鹏娜 马鹏程 +1 位作者 张进华 洪军 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期142-150,共9页
针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的... 针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的超参数;其次,同步采集脑电、下肢运动相关肌肉的表面肌电信号(sEMG)和下肢关节运动信号,并对脑电和表面肌电信号的步态相关特征进行分析;然后,以多通道脑电和下肢运动相关表面肌电信号作为解码模型的输入,自动提取脑肌电融合信号中步态相关特征并构建膝踝关节运动轨迹与特征之间的非线性回归模型;最后,以多通道脑电作为解码模型的输入,构建步态相关脑电信号和表面肌电信号之间的非线性回归模型。实验结果表明:所提方法与传统支持向量机方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数提高了0.12;与单独采用脑电、表面肌电信号和脑肌电信号平均绝对值特征融合信号进行解码方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数分别提高了0.81、0.19和0.63。该方法可实现从脑电信号中对部分表面肌电信号波形的解码,解码波形和实测波形的平均Pearson相关系数值接近0.5,证明从脑电信号中可解码出肌肉通道的表面肌电信号波形,为下肢外骨骼主动连续控制的应用提供了新思路。 展开更多
关键词 脑电 表面肌电 双向长短时记忆神经网络 步态空参数解码 Pearson相关
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部