期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LSTM-POD的汽车湍流尾迹的高时间分辨速度场重构
1
作者
杨志刚
李俣静
+2 位作者
夏超
王梦佳
余磊
《汽车工程》
EI
CSCD
北大核心
2024年第7期1302-1313,共12页
本文针对方背Ahmed汽车标模的湍流尾迹,建立基于长短时记忆法(long short-term memory,LSTM)和本征正交分解(proper orthogonal decomposition, POD)相结合的深度学习模型LSTM-POD。通过建立非时间分辨平面速度场POD模态系数和若干离散...
本文针对方背Ahmed汽车标模的湍流尾迹,建立基于长短时记忆法(long short-term memory,LSTM)和本征正交分解(proper orthogonal decomposition, POD)相结合的深度学习模型LSTM-POD。通过建立非时间分辨平面速度场POD模态系数和若干离散点的时间分辨速度信号的映射关系,实现了方背Ahmed汽车标模湍流尾迹流场的高时间分辨率重构,并对比了不同时间步长配置,即单时间步长(LSTM-Sin)和多时间步长(LSTM-Mul)对重构效果的影响。研究表明:LSTM-POD模型在时间序列重构中具有较强的学习和泛化能力。另外,LSTM-Mul考虑到了时间上的连续性和相关性,相较于LSTM-Sin,其重构出的低阶模态系数和速度场与POD的重构结果更吻合。本研究提出的深度学习模型可以缓解通过实验及高精度数值模拟获取高时间分辨率流场数据资源消耗大、计算效率低等问题。
展开更多
关键词
汽车湍流尾迹
深度学习
流场重构
本征正交分解
长短时记忆法
在线阅读
下载PDF
职称材料
题名
基于LSTM-POD的汽车湍流尾迹的高时间分辨速度场重构
1
作者
杨志刚
李俣静
夏超
王梦佳
余磊
机构
同济大学汽车学院
同济大学上海地面交通工具风洞中心
北京民用飞机技术研究中心
出处
《汽车工程》
EI
CSCD
北大核心
2024年第7期1302-1313,共12页
基金
国家自然科学基金(52372360)
国家重点研发计划项目(2022YFE0208000)
+1 种基金
上海市地面交通工具空气动力与热环境模拟重点实验室(23DZ2229029)
中央高校基本科研业务费专项资金资助。
文摘
本文针对方背Ahmed汽车标模的湍流尾迹,建立基于长短时记忆法(long short-term memory,LSTM)和本征正交分解(proper orthogonal decomposition, POD)相结合的深度学习模型LSTM-POD。通过建立非时间分辨平面速度场POD模态系数和若干离散点的时间分辨速度信号的映射关系,实现了方背Ahmed汽车标模湍流尾迹流场的高时间分辨率重构,并对比了不同时间步长配置,即单时间步长(LSTM-Sin)和多时间步长(LSTM-Mul)对重构效果的影响。研究表明:LSTM-POD模型在时间序列重构中具有较强的学习和泛化能力。另外,LSTM-Mul考虑到了时间上的连续性和相关性,相较于LSTM-Sin,其重构出的低阶模态系数和速度场与POD的重构结果更吻合。本研究提出的深度学习模型可以缓解通过实验及高精度数值模拟获取高时间分辨率流场数据资源消耗大、计算效率低等问题。
关键词
汽车湍流尾迹
深度学习
流场重构
本征正交分解
长短时记忆法
Keywords
turbulent wake of automobiles
deep learning
reconstruction of flow fields
POD
LSTM
分类号
U461.1 [机械工程—车辆工程]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LSTM-POD的汽车湍流尾迹的高时间分辨速度场重构
杨志刚
李俣静
夏超
王梦佳
余磊
《汽车工程》
EI
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部