期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于长短时记忆模型与无标记动作捕捉系统估算跑步地面反作用力曲线
1
作者 周玉林 赵峻辰 +2 位作者 李翰君 时会娟 刘卉 《医用生物力学》 北大核心 2025年第5期1295-1302,共8页
目的应用长短时记忆神经网络(long short-term memory,LSTM)模型,以无标记动作捕捉系统所得下肢关节点坐标作为输入变量,估算跑步过程中的地面反作用力(ground reaction forces,GRF)曲线。方法采用无标记动作捕捉系统和三维测力台同步采... 目的应用长短时记忆神经网络(long short-term memory,LSTM)模型,以无标记动作捕捉系统所得下肢关节点坐标作为输入变量,估算跑步过程中的地面反作用力(ground reaction forces,GRF)曲线。方法采用无标记动作捕捉系统和三维测力台同步采集59名业余跑者跑步动作下的视频图像和动力学数据。建立LSTM模型,以Theia3D无标记动作捕捉系统获取的11个下肢关节点三维坐标作为输入变量估算跑步支撑阶段三维GRF曲线。使用相关系数、均方根误差(root mean square error,RMSE)和标准化均方根误差(normalized root mean square error,nRMSE)评估LSTM模型的估算效果,采用统计参数映射分析LSTM模型估算和测力台实测曲线的差异,采用配对样本t检验分析模型估算与实测GRF特征差异。结果LSTM模型估算所得GRF与实测值之间高度相关(r>0.85,P<0.001)且误差较小(RMSE<0.3倍体重,nRMSE<15%)。LSTM模型估算所得GRF曲线与实测曲线之间不存在显著差异区间。基于LSTM估算曲线计算所得GRF特征与实测值不存在显著差异(P>0.05)。结论基于LSTM模型,可从无标记动作捕捉系统获取的下肢关节点三维坐标有效估算人体跑步时GRF曲线,并获得准确性较高的GRF特征。本研究建立的LSTM模型可以用于户外环境下监控跑步过程中的损伤风险。 展开更多
关键词 长短时记忆模型 地面反作用力 无标记动作捕捉 跑步损伤
在线阅读 下载PDF
基于注意力卷积长短时记忆模型的城市出租车流量预测
2
作者 周新民 金江涛 +2 位作者 鲍娜娜 袁涛 崔烨 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期153-162,共10页
为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效... 为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效提升交通时空特征的提取能力。同时,引入专门的学习元件考虑外部因素和POI密度对交通流量的影响,并利用北京市出租车轨迹数据验证。结果表明:ACLR模型在城市交通流预测中的精度高于差分自回归滑动平均(ARIMA)模型、长短时记忆(LSTM)网络、深度时空残差网络(ST-ResNet)、卷积神经网络(CNN)-残差神经单元-LSTM(CRL)循环神经网络、ACFM等模型,在无POI密度和考虑POI密度的情况下,均有助于提升模型的预测性能,ACLA模型的预测值与真实值基本一致,高峰时段也能与真实值较好地吻合,有效提升交通时空特征的提取能力,降低预测误差,使得交通流量预测性能得到优化。 展开更多
关键词 注意力卷积长短记忆残差网络(ACLR)模型 交通流量预测 城市出租车 空特征 残差结构
在线阅读 下载PDF
最小窥视孔长短时记忆模型 被引量:6
3
作者 包志强 赵研 +2 位作者 胡啸天 赵媛媛 黄琼丹 《计算机工程与设计》 北大核心 2020年第1期134-138,共5页
由于循环神经网络拥有复杂的模型结构,使训练模型达到最优变得困难。因此,提出一种最小窥视孔长短时记忆模型,它只有一个唯一门来更新信息,拥有两个网络层,通过减少一定的模型参数降低模型训练的难度,提高模型性能。实验结果表明,在不... 由于循环神经网络拥有复杂的模型结构,使训练模型达到最优变得困难。因此,提出一种最小窥视孔长短时记忆模型,它只有一个唯一门来更新信息,拥有两个网络层,通过减少一定的模型参数降低模型训练的难度,提高模型性能。实验结果表明,在不同数据集上,该模型性能高于长短期记忆模型,部分高于门循环单元模型,在参数个数、运行时间方面,其远小于长短期记忆模型以及门循环单元模型。 展开更多
关键词 深度学习 循环神经网络 长短时记忆模型 门循环单元模型 最小窥视孔长短时记忆模型
在线阅读 下载PDF
使用深度长短时记忆模型对于评价词和评价对象的联合抽取 被引量:11
4
作者 沈亚田 黄萱菁 曹均阔 《中文信息学报》 CSCD 北大核心 2018年第2期110-119,共10页
评价词和评价对象抽取在意见挖掘中是一个重要的任务,我们在句子级评价词和评价对象联合抽取任务上研究了长短时记忆(long short-term memory)神经网络模型的几种变种应用。长短时记忆神经网络模型是一种循环神经网络模型,该模型使用长... 评价词和评价对象抽取在意见挖掘中是一个重要的任务,我们在句子级评价词和评价对象联合抽取任务上研究了长短时记忆(long short-term memory)神经网络模型的几种变种应用。长短时记忆神经网络模型是一种循环神经网络模型,该模型使用长短时记忆模型单元作为循环神经网络的记忆单元,它能够获得更多的长距离上下文信息,同时避免了普通循环神经网络的梯度消失和梯度爆炸的问题。我们对比了传统的方法,实验结果证明长短时记忆神经网络模型优于以前的方法,在细粒度评价词和评价对象的联合抽取中达到更好的性能。 展开更多
关键词 循环神经网络 长短时记忆模型 评价词与评价对象联合抽取 深度学习 序列标注
在线阅读 下载PDF
双向长短时记忆模型训练中的空间平滑正则化方法研究 被引量:3
5
作者 李文洁 葛凤培 +1 位作者 张鹏远 颜永红 《电子与信息学报》 EI CSCD 北大核心 2019年第3期544-550,共7页
双向长短时记忆模型(BLSTM)由于其强大的时间序列建模能力,以及良好的训练稳定性,已经成为语音识别领域主流的声学模型结构。但是该模型结构拥有更大计算量以及参数数量,因此在神经网络训练的过程当中很容易过拟合,进而无法获得理想的... 双向长短时记忆模型(BLSTM)由于其强大的时间序列建模能力,以及良好的训练稳定性,已经成为语音识别领域主流的声学模型结构。但是该模型结构拥有更大计算量以及参数数量,因此在神经网络训练的过程当中很容易过拟合,进而无法获得理想的识别效果。在实际应用中,通常会使用一些技巧来缓解过拟合问题,例如在待优化的目标函数中加入L2正则项就是常用的方法之一。该文提出一种空间平滑的方法,把BLSTM模型激活值的向量重组成一个2维图,通过滤波变换得到它的空间信息,并将平滑该空间信息作为辅助优化目标,与传统的损失函数一起,作为优化神经网络参数的学习准则。实验表明,在电话交谈语音识别任务上,这种方法相比于基线模型取得了相对4%的词错误率(WER)下降。进一步探索了L2范数正则技术和空间平滑方法的互补性,实验结果表明,同时应用这2种算法,能够取得相对8.6%的WER下降。 展开更多
关键词 语音信号处理 空间平滑 双向长短时记忆模型(LSTM) 正则化 过拟合
在线阅读 下载PDF
基于WD-LSTM的宽带电磁辐射时序建模预测方法 被引量:1
6
作者 杨晨 宋欣蔚 岳云涛 《现代电子技术》 北大核心 2025年第6期9-15,共7页
无线通信技术的飞速发展以及包含相关功能产品的广泛使用,使得环境电磁场呈现复杂的变化特性,且城市电磁环境状况日益恶化,故进行电磁辐射的分析与预测对于潜在风险预警与控制至关重要。文中对北京市典型商业区核心街道连续时段的宽带... 无线通信技术的飞速发展以及包含相关功能产品的广泛使用,使得环境电磁场呈现复杂的变化特性,且城市电磁环境状况日益恶化,故进行电磁辐射的分析与预测对于潜在风险预警与控制至关重要。文中对北京市典型商业区核心街道连续时段的宽带电磁辐射进行了测量,并对其进行了短时傅里叶变换分析。分析结果显示,电磁辐射时变规律与人们的作息活动具有相关性,且受部分时段无线设备密集使用的影响,呈现出强烈的低频周期性和高频波动性,而这些特性会导致单一的时序建模方法预测效果变差。为此,提出了一种结合小波分解(WD)与长短时记忆(LSTM)模型的混合预测方法。该方法根据电磁辐射时频特性,将其分解为主要周期分量和细节分量进行分层预测,以适应复杂城市电磁环境状况。基于测量数据,将所提方法与其他典型时序预测模型进行对比,结果表明,该方法的预测准确度更高,并具有更强的异常值适应性与稳定性。 展开更多
关键词 宽带电磁辐射 间序列 小波分解 长短时记忆模型 频特性 分层预测
在线阅读 下载PDF
基于TCN模型的软件系统老化预测框架 被引量:1
7
作者 王艳超 姚江毅 +1 位作者 李雄伟 刘林云 《计算机应用与软件》 北大核心 2025年第5期25-29,61,共6页
随着软件规模的扩大和逻辑复杂度的提高,软件老化特征表现更加隐蔽,老化参数时序信号更加复杂,针对时序预测法对序列平稳性要求高和BP神经网络收敛速度慢、易陷入局部极值的问题,提出以时域卷积网络(TCN)模型为基础的软件老化预测框架... 随着软件规模的扩大和逻辑复杂度的提高,软件老化特征表现更加隐蔽,老化参数时序信号更加复杂,针对时序预测法对序列平稳性要求高和BP神经网络收敛速度慢、易陷入局部极值的问题,提出以时域卷积网络(TCN)模型为基础的软件老化预测框架。采集可用内存数据作为框架的输入,经TCN模型进行预测,通过检查预测输出的内存与实际内存的平均误差评价模型的效率。与ARIMA模型和RNN(LSTM)模型预测结果进行对比表明,TCN模型对时间序列平稳性要求低、适应性更强,不存在梯度爆炸或消失的问题,对采集的老化数据预测效果最好。 展开更多
关键词 软件老化 域卷积网络 老化预测框架 预测误差 差分自回归滑动平均模型 长短时记忆模型
在线阅读 下载PDF
基于LSTM模型的宁蒙河段封河时间预测研究 被引量:8
8
作者 马志瑾 章博 《人民黄河》 CAS 北大核心 2021年第2期45-48,共4页
为解决目前使用的封河时间预测模型输入参数多、边界条件要求高以及长预见期预测精度较差等问题,采用长短时记忆(LSTM)循环神经网络模型方法,对黄河宁蒙河段封河时间进行预测。结果表明:在非极端天气条件下,LSTM模型的预报精度满足水情... 为解决目前使用的封河时间预测模型输入参数多、边界条件要求高以及长预见期预测精度较差等问题,采用长短时记忆(LSTM)循环神经网络模型方法,对黄河宁蒙河段封河时间进行预测。结果表明:在非极端天气条件下,LSTM模型的预报精度满足水情预报的要求,该模型的预见期和预测精度优于传统预报模型,对运行条件和边界条件的要求远低于现有人工神经网络模型以及冰水动力学模型,能够有效提升宁蒙河段封河时间预报水平。 展开更多
关键词 封河间预测 长短时记忆模型 宁蒙河段 黄河
在线阅读 下载PDF
基于PSO-LSTM模型的地热储层温度预测研究 被引量:5
9
作者 杨艺 赵惊涛 付国强 《矿业科学学报》 CSCD 北大核心 2024年第4期538-548,共11页
预测不同深度地热储层的温度是确定热储的热能储存量、热输出能力和可持续利用期限等参数的关键。针对不同约束条件下的热储温度预测问题,建立了一种基于粒子群优化算法(PSO)的长短时记忆网络(LSTM)的热储温度预测模型,对共和盆地恰卜... 预测不同深度地热储层的温度是确定热储的热能储存量、热输出能力和可持续利用期限等参数的关键。针对不同约束条件下的热储温度预测问题,建立了一种基于粒子群优化算法(PSO)的长短时记忆网络(LSTM)的热储温度预测模型,对共和盆地恰卜恰地区地热井进行了预测,并通过与BP模型、LSTM模型的预测结果对比,验证该模型的有效性。结果表明,该模型预测结果的均方根误差(RMSE)、平均绝对百分误差(MAPE)、平均绝对偏差(MAD)值与BP、LSTM模型相比均最小,且RMSE最小值仅为1.192。该模型预测值与真实值的相关性系数为0.929,说明该模型的预测效果好,能实现地热系统储层温度的高效预测,为地热系统高效长久开发提供科学依据。 展开更多
关键词 地热系统 粒子群优化算法 长短记忆网络模型 温度预测
在线阅读 下载PDF
采用双向LSTM模型的雷达HRRP目标识别 被引量:22
10
作者 徐彬 陈渤 +2 位作者 刘家麒 王鹏辉 刘宏伟 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第2期29-34,共6页
针对传统雷达高分辨距离像目标识别方法只考虑高分辨距离像样本的包络信息而没有考虑其时序相关特性问题,提出了一种采用双向长短时记忆网络模型的识别算法。该算法首先选取出高分辨距离像样本的目标区域,并根据目标区域提取对于平移敏... 针对传统雷达高分辨距离像目标识别方法只考虑高分辨距离像样本的包络信息而没有考虑其时序相关特性问题,提出了一种采用双向长短时记忆网络模型的识别算法。该算法首先选取出高分辨距离像样本的目标区域,并根据目标区域提取对于平移敏感性稳健的输入特征;然后采用双向长短时记忆模型对输入特征提取双向时序信息;最后通过投票策略融合双向信息,输出样本类别。采用实测数据的实验结果表明,该算法不仅可以有效地识别雷达目标,而且对于平移敏感性非常稳健。 展开更多
关键词 雷达自动目标识别 长短时记忆模型 高分辨距离像 平移敏感性 序相关性
在线阅读 下载PDF
基于语义嵌入模型与交易信息的智能合约自动分类系统 被引量:15
11
作者 黄步添 刘琦 +2 位作者 何钦铭 刘振广 陈建海 《自动化学报》 EI CSCD 北大核心 2017年第9期1532-1543,共12页
作为区块链技术的一个突破性扩展,智能合约允许用户在区块链上实现个性化的代码逻辑从而使得区块链技术更加的简单易用.在智能合约代码信息迅速增长的背景下,如何管理和组织海量智能合约代码变得更具挑战性.基于人工智能技术的代码分类... 作为区块链技术的一个突破性扩展,智能合约允许用户在区块链上实现个性化的代码逻辑从而使得区块链技术更加的简单易用.在智能合约代码信息迅速增长的背景下,如何管理和组织海量智能合约代码变得更具挑战性.基于人工智能技术的代码分类系统能根据代码的文本信息自动分门别类,从而更好地帮助人们管理和组织代码的信息.本文以Ethereum平台上的智能合约为例,鉴于词嵌入模型可以捕获代码的语义信息,提出一种基于词嵌入模型的智能合约分类系统.另外,每一个智能合约都关联着一系列交易,我们又通过智能合约的交易信息来更深入地了解智能合约的逻辑行为.据我们所知,本文是对智能合约代码自动分类问题的首次研究尝试.测试结果显示该系统具有较为令人满意的分类性能. 展开更多
关键词 智能合约 代码 交易信息 词嵌入模型 神经网络 长短时记忆模型
在线阅读 下载PDF
多模态融合下长时程肺部病灶良恶性预测方法 被引量:1
12
作者 张娅楠 赵涓涓 +2 位作者 赵鑫 张小龙 王三虎 《计算机工程与应用》 CSCD 北大核心 2019年第10期146-153,共8页
为了更精确、全面地表征各时期肺部医学影像中病灶特征的变化与发展规律,研究在时间纵向维度上预测肺结节的演变方式,构建了一种多模态特征融合下不同时期肺部病灶良恶性预测模型。根据病人不同时期的序列CT图像,提取肺部病灶的传统特... 为了更精确、全面地表征各时期肺部医学影像中病灶特征的变化与发展规律,研究在时间纵向维度上预测肺结节的演变方式,构建了一种多模态特征融合下不同时期肺部病灶良恶性预测模型。根据病人不同时期的序列CT图像,提取肺部病灶的传统特征与深度特征,构造多模态特征;通过神经网络对多模态特征进行相关性快速融合;利用长短时记忆方法学习不同时期具有时间特征的肺部病灶特征向量,构建一个双向长短时记忆网络对病灶进行良恶性预测。实验表明,所提方法准确率为92.8%,比传统方法有所提高,可以实现有效预测。 展开更多
关键词 肺部病灶 特征融合 长短时记忆模型
在线阅读 下载PDF
基于BiLSTM模型的定义抽取方法 被引量:9
13
作者 阳萍 谢志鹏 《计算机工程》 CAS CSCD 北大核心 2020年第3期40-45,共6页
定义抽取是从非结构化文本中自动识别定义句的任务,定义抽取问题可建模为句子中术语及相应定义的序列标注问题,并利用标注结果完成抽取任务。针对传统的定义抽取方法在抽取定义特征过程中费时且容易造成错误传播的不足,提出一个基于双... 定义抽取是从非结构化文本中自动识别定义句的任务,定义抽取问题可建模为句子中术语及相应定义的序列标注问题,并利用标注结果完成抽取任务。针对传统的定义抽取方法在抽取定义特征过程中费时且容易造成错误传播的不足,提出一个基于双向长短时记忆(BiLSTM)的序列标注神经网络模型,对输入文本进行自动化定义抽取。通过将原始数据输入到BiLSTM神经网络中,完成输入句的特征表示,并采用基于LSTM的解码器进行解码得到标注结果。在Wikipedia英文数据集上的实验结果表明,该方法的精确率、召回率和F1值分别为94.21%、90.10%和92.11%,有效提升了基准模型效果。 展开更多
关键词 定义抽取 双向长短时记忆模型 序列标注 LSTM模型 深度神经网络
在线阅读 下载PDF
基于多时间尺度复合深度神经网络的股票价格预测 被引量:11
14
作者 罗鑫 张金林 《武汉金融》 北大核心 2020年第9期32-40,共9页
本文以2012—2019年沪深300指数为样本,利用深度学习方法对沪深300指数的涨跌方向进行预测。在多时间尺度上分别运用卷积神经网络与长短时记忆模型进行特征提取后,通过将不同时间尺度上的特征矩阵进行拼接而得到最终的预测结果。在使用... 本文以2012—2019年沪深300指数为样本,利用深度学习方法对沪深300指数的涨跌方向进行预测。在多时间尺度上分别运用卷积神经网络与长短时记忆模型进行特征提取后,通过将不同时间尺度上的特征矩阵进行拼接而得到最终的预测结果。在使用不同网络结构超参数调整模型结构后,将预测效果与其他模型进行比较,发现本文提出的多时间尺度CNN-LSTM模型能够有效改善对沪深300指数涨跌预测的效果,并在交易回测中获得盈利。本文的研究丰富了金融时间序列数据分析的方法,既能为投资者提供决策参考,也有助于提升对金融市场规律的认知。 展开更多
关键词 深度学习 神经网络 股票价格 长短时记忆模型 卷积神经网络
在线阅读 下载PDF
长视频的超级帧切割视觉内容解释方法
15
作者 魏英姿 刘王杰 《北京工业大学学报》 CAS CSCD 北大核心 2024年第7期805-813,共9页
针对现有基于编码解码的视频描述方法存在的对视频较长、在视频场景切换频繁情况下视觉特征提取能力不足或关键性片段捕获能力不足等视频描述不佳的问题,提出一种基于超级帧切割长视频的视频字幕方法。首先,提出超级帧提取算法,计算关... 针对现有基于编码解码的视频描述方法存在的对视频较长、在视频场景切换频繁情况下视觉特征提取能力不足或关键性片段捕获能力不足等视频描述不佳的问题,提出一种基于超级帧切割长视频的视频字幕方法。首先,提出超级帧提取算法,计算关键视频时间占比率以满足视频浏览时长限制,缩短视频检索时间。然后,构建两层筛选模型以自适应提取超级帧,过滤冗余关键帧,执行多场景语义描述。将保留的关键帧嵌入周围帧,利用深层网络模型以及小卷积核池化采样域获取更多的视频特征,克服了经典视频标题方法不能直接用于处理长视频的困难。最后,通过用长短时记忆模型代替循环神经网络解码生成视频标题,给出视频内容的分段解释信息。在YouTube数据集视频、合成视频和监控长视频上进行测试,采用多种机器翻译评价指标评估了该方法的性能,均获得了不同程度的提升。实验结果表明,该方法在应对视频场景切换频繁、视频较长等挑战时,能够获得较好的片段描述。 展开更多
关键词 超级帧切割 间占比率 多场景语义 视觉特征 长短时记忆模型 视频标题
在线阅读 下载PDF
基于深度学习的复合材料开孔板拉伸失效行为预测 被引量:2
16
作者 崔翼扬 陈普会 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第3期468-477,共10页
为研究复合材料开孔板在拉伸载荷下的失效行为,基于开孔板的拉伸试验建立了高精度的有限元仿真模型,并批量生成了拉伸载荷-位移曲线的数据集。提出了一种双长短时记忆(Long short-term memory,LSTM)神经网络模型用于预测载荷-位移曲线,... 为研究复合材料开孔板在拉伸载荷下的失效行为,基于开孔板的拉伸试验建立了高精度的有限元仿真模型,并批量生成了拉伸载荷-位移曲线的数据集。提出了一种双长短时记忆(Long short-term memory,LSTM)神经网络模型用于预测载荷-位移曲线,其中第1个LSTM模型进行输入特征的提取,第2个LSTM模型直接给出载荷-位移曲线的预测。结果表明:这一模型能够高效、准确地预测开孔板的拉伸载荷-位移曲线,在测试集上的决定系数R2可以达到0.9755,关键特征如初始刚度E0的预测误差仅为1.85%,极限载荷Fmax的预测误差仅为2.16%。 展开更多
关键词 复合材料开孔板 失效行为预测 载荷-位移曲线 深度学习 长短时记忆模型
在线阅读 下载PDF
基于机器学习的黑龙江省强降水致灾预估方法研究 被引量:3
17
作者 李昊宸 邵源铭 +4 位作者 杨洪伟 蒋慧亮 徐永清 李亚滨 魏磊 《灾害学》 CSCD 北大核心 2024年第3期60-65,共6页
采用黑龙江省1984—2019年各县强降水灾情资料和逐日降水资料,以逻辑回归和长短时记忆网络模型为基础,建立了黑龙江全省、大兴安岭、小兴安岭、松嫩平原、三江平原和东南半山区的强降水致灾与否二分类预估模型。通过机器学习,得到黑龙... 采用黑龙江省1984—2019年各县强降水灾情资料和逐日降水资料,以逻辑回归和长短时记忆网络模型为基础,建立了黑龙江全省、大兴安岭、小兴安岭、松嫩平原、三江平原和东南半山区的强降水致灾与否二分类预估模型。通过机器学习,得到黑龙江省以及5个地区判断强降水致灾与否的最佳观测天数在4~6 d、最佳的日降水量阈值为16~20 mm。比较全连接逻辑回归模型、优先考虑日期的部分连接逻辑回归模型D、优先考虑站点的部分连接逻辑回归模型S和长短时记忆网络LSTM模型等四个模型的表现,前三种逻辑回归模型表现差距不大,相对表现最好的全连接模型,其在大部地区所表现的准确率、精确率、召回率和F1分数均在0.7以上,而LSTM模型只在大兴安岭表现更好一些。 展开更多
关键词 机器学习 逻辑回归模型 长短记忆网络模型 强降水致灾预估模型 黑龙江
在线阅读 下载PDF
深度学习在手写汉字识别中的应用综述 被引量:114
18
作者 金连文 钟卓耀 +3 位作者 杨钊 杨维信 谢泽澄 孙俊 《自动化学报》 EI CSCD 北大核心 2016年第8期1125-1141,共17页
手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本... 手写汉字识别(Handwritten Chinese character recognition,HCCR)是模式识别的一个重要研究领域,最近几十年来得到了广泛的研究与关注,随着深度学习新技术的出现,近年来基于深度学习的手写汉字识别在方法和性能上得到了突破性的进展.本文综述了深度学习在手写汉字识别领域的研究进展及具体应用.首先介绍了手写汉字识别的研究背景与现状.其次简要概述了深度学习的几种典型结构模型并介绍了一些主流的开源工具,在此基础上详细综述了基于深度学习的联机和脱机手写汉字识别的方法,阐述了相关方法的原理、技术细节、性能指标等现状情况,最后进行了分析与总结,指出了手写汉字识别领域仍需要解决的问题及未来的研究方向. 展开更多
关键词 深度学习 手写汉字识别 卷积神经网络 回归神经网络 长短时记忆模型 层叠自动编码机
在线阅读 下载PDF
一种基于双向LSTM的联合学习的中文分词方法 被引量:10
19
作者 章登义 胡思 徐爱萍 《计算机应用研究》 CSCD 北大核心 2019年第10期2920-2924,共5页
针对现有的基于深度学习的神经网络模型通常都是对单一的语料库进行训练学习,提出了一种大规模的多语料库联合学习的中文分词方法。语料库分别为简体中文数据集(PKU、MSRA、CTB6)和繁体中文数据集(CITYU、AS),每一个数据集输入语句的句... 针对现有的基于深度学习的神经网络模型通常都是对单一的语料库进行训练学习,提出了一种大规模的多语料库联合学习的中文分词方法。语料库分别为简体中文数据集(PKU、MSRA、CTB6)和繁体中文数据集(CITYU、AS),每一个数据集输入语句的句首和句尾分别添加一对标志符。应用BLSTM(双向长短时记忆模型)和CRF(条件随机场模型)对数据集进行单独训练和多语料库共同训练的实验,结果表明大规模的多语料库共同学习训练能取得良好的分词效果。 展开更多
关键词 中文分词 大规模语料库 联合学习 双向长短时记忆模型
在线阅读 下载PDF
基于MAC-LSTM的问题分类研究 被引量:15
20
作者 余本功 许庆堂 张培行 《计算机应用研究》 CSCD 北大核心 2020年第1期40-43,共4页
针对问句文本通常较短、语义信息与词语共现信息不足等问题,提出一种多层级注意力卷积长短时记忆模型(multi-level attention convolution LSTM neural network,MAC-LSTM)的问题分类方法。相比基于词嵌入的深度学习模型,该方法使用疑问... 针对问句文本通常较短、语义信息与词语共现信息不足等问题,提出一种多层级注意力卷积长短时记忆模型(multi-level attention convolution LSTM neural network,MAC-LSTM)的问题分类方法。相比基于词嵌入的深度学习模型,该方法使用疑问词注意力机制对问句中的疑问词特征重点关注。同时,使用注意力机制结合卷积神经网络与长短时记忆模型各自文本建模的优势,既能够并行方式提取词汇级特征,又能够学习更高级别的长距离依赖特征。实验表明,该方法较传统的机器学习方法和普通的卷积神经网络、长短时记忆模型有明显的效果提升。 展开更多
关键词 问答系统 问题分类 注意力机制 疑问词注意力机制 卷积神经网络 长短时记忆模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部