期刊文献+
共找到1,475篇文章
< 1 2 74 >
每页显示 20 50 100
基于时间卷积和长短期记忆网络的短期云资源预测模型 被引量:2
1
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 间卷积网络(TCN) 长短记忆网络(lstm)
在线阅读 下载PDF
基于双向长短时记忆网络和自注意力机制的心音分类
2
作者 卢官明 李齐健 +4 位作者 卢峻禾 戚继荣 赵宇航 王洋 魏金生 《数据采集与处理》 北大核心 2025年第2期456-468,共13页
心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进... 心音听诊是早期筛查心脏病的有效诊断方法。为了提高异常心音检测性能,提出了一种基于双向长短时记忆(Bi⁃directional long short⁃term memory,Bi⁃LSTM)网络和自注意力机制(Self⁃attention mechanism,SA)的心音分类算法。对心音信号进行分帧处理,提取每帧心音信号的梅尔频率倒谱系数(Mel⁃frequency cepstral coefficients,MFCC)特征;将MFCC特征序列输入Bi⁃LSTM网络,利用Bi⁃LSTM网络提取心音信号的时域上下文特征;通过自注意力机制动态调整Bi⁃LSTM网络各时间步输出特征的权重,得到有利于分类的更具鉴别性的心音特征;通过Softmax分类器实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016心音数据集上对所提出的算法使用10折交叉验证法进行了评估,得到0.9425的灵敏度、0.9437的特异度、0.8367的精度、0.8865的F1得分和0.9434的准确率,优于对比的典型算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,具有潜在的临床应用前景。 展开更多
关键词 心音分类 梅尔频率倒谱系数 双向长短记忆网络 自注意力机制
在线阅读 下载PDF
基于生成对抗网络与长短时记忆网络的机器人书法系统
3
作者 韩浩 刘佳 《西南大学学报(自然科学版)》 北大核心 2025年第7期231-244,共14页
机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(L... 机器人书法作为工业制造中重要的机器人操纵器应用之一,面临着巨大的挑战,其主动书写机制需要大量包含书写轨迹序列信息的训练数据集,而手动标注这些数据则非常繁琐。为解决这一问题,提出了一种基于生成对抗网络(GAN)和长短时记忆网络(LSTM)的机器人书法系统。该书写系统将汉字笔画图像转换为轨迹序列,无须使用笔画轨迹编码信息,克服了传统书写轨迹信息缺失的问题。首先构建了一个生成对抗架构,其中LSTM网络与鉴别器网络结合,以减小训练数据集的规模。然后,LSTM网络通过多个循环逐步生成新的轨迹点,使机器人能够逐渐完成整个汉字书法的书写。最后,利用鉴别器网络评估LSTM网络输出结果来辅助机器人找到最佳策略,并引入强化学习算法来进一步提高系统性能。实验结果证明,所提出的系统能够高效产生高质量的汉字书法。 展开更多
关键词 生成对抗网络 长短记忆网络 强化学习 汉字书法 机器人书法系统
在线阅读 下载PDF
基于长短时记忆神经网络的中国大陆地区地磁场长期变化预测方法
4
作者 李江 陈斌 《地震学报》 北大核心 2025年第3期390-409,共20页
选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台... 选取中国大陆及邻区32个地磁台站的地磁场要素即磁偏角D、地磁场水平分量H、垂直分量Z的时均值数据,利用磁静条件筛选并剔除异常值,之后通过月均值年差分得到主磁场各要素的长期变化序列,利用长短时记忆神经网络(LSTM)建立了未来一年台站各要素数据的预测模型。预测结果表明:LSTM模型预测的D要素均方根误差(RMSE)和归一化均方根误差(NRMSE)的平均值为1.139′和0.040,H分量的RMSE和NRMSE的平均值为11.85 n T和0.086,Z分量的RMSE和NRMSE的平均值为15.10 n T和0.026;LSTM模型对Z分量的预测精度最高,其次是D要素,最差的是H分量。分别计算由LSTM模型、线性外推、二次外推得到的台站各要素年变率误差,结果显示:对于D要素,LSTM预测结果的RMSE平均值为0.361′/a,较线性外推法提高了54%,较二次外推法提高了59%;对于H分量,LSTM预测结果的RMSE平均值为3.921 n T/a,较线性外推法提高了58%,较二次外推法提高了76%;对于Z分量,LSTM预测结果的RMSE平均值为4.339 n T/a,较线性外推法提高了47%,较二次外推法提高了57%。 展开更多
关键词 地球磁场 长短记忆(lstm) 长期变化 深度学习 中国大陆
在线阅读 下载PDF
时序记忆增强的CNN-LSTM滚动轴承故障诊断方法 被引量:7
5
作者 陈永展 曲建岭 +1 位作者 王小飞 王元鑫 《噪声与振动控制》 北大核心 2025年第1期105-111,共7页
针对CNN-LSTM网络处理小样本含噪数据时诊断误差较大的问题,提出一维卷积神经网络(One Dimensional-Convolutional Neural Network,1D-CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)相融合的时序记忆增强故障诊断模型(CNN-LSTM-ti... 针对CNN-LSTM网络处理小样本含噪数据时诊断误差较大的问题,提出一维卷积神经网络(One Dimensional-Convolutional Neural Network,1D-CNN)和长短时记忆网络(Long Short-Term Memory,LSTM)相融合的时序记忆增强故障诊断模型(CNN-LSTM-time Sequential Memory Enhancement,CNN-LSTM-TSME)。该模型首先通过CNN自适应提取时序数据的故障特征,其次通过对LSTM的输入数据进行递推平均滤波,增强对时序含噪数据的处理能力,再次通过耦合LSTM单元的遗忘门和输入门,将两者分别与记忆单元相连,提高时序数据的记忆能力,从而更加适合于小样本数据的学习,最后利用全连接层后的Softmax函数实现多轴承故障状态的识别。基于凯斯西储大学滚动轴承数据集的实验表明,该模型对于标准数据和加噪数据的平均准确率均在95%以上,明显优于CNN-LSTM和其他现有模型,具有较高的诊断精度和泛化性能。 展开更多
关键词 故障诊断 滚动轴承 间序列 卷积神经网络 长短记忆网络
在线阅读 下载PDF
基于长短时记忆模型与无标记动作捕捉系统估算跑步地面反作用力曲线
6
作者 周玉林 赵峻辰 +2 位作者 李翰君 时会娟 刘卉 《医用生物力学》 北大核心 2025年第5期1295-1302,共8页
目的应用长短时记忆神经网络(long short-term memory,LSTM)模型,以无标记动作捕捉系统所得下肢关节点坐标作为输入变量,估算跑步过程中的地面反作用力(ground reaction forces,GRF)曲线。方法采用无标记动作捕捉系统和三维测力台同步采... 目的应用长短时记忆神经网络(long short-term memory,LSTM)模型,以无标记动作捕捉系统所得下肢关节点坐标作为输入变量,估算跑步过程中的地面反作用力(ground reaction forces,GRF)曲线。方法采用无标记动作捕捉系统和三维测力台同步采集59名业余跑者跑步动作下的视频图像和动力学数据。建立LSTM模型,以Theia3D无标记动作捕捉系统获取的11个下肢关节点三维坐标作为输入变量估算跑步支撑阶段三维GRF曲线。使用相关系数、均方根误差(root mean square error,RMSE)和标准化均方根误差(normalized root mean square error,nRMSE)评估LSTM模型的估算效果,采用统计参数映射分析LSTM模型估算和测力台实测曲线的差异,采用配对样本t检验分析模型估算与实测GRF特征差异。结果LSTM模型估算所得GRF与实测值之间高度相关(r>0.85,P<0.001)且误差较小(RMSE<0.3倍体重,nRMSE<15%)。LSTM模型估算所得GRF曲线与实测曲线之间不存在显著差异区间。基于LSTM估算曲线计算所得GRF特征与实测值不存在显著差异(P>0.05)。结论基于LSTM模型,可从无标记动作捕捉系统获取的下肢关节点三维坐标有效估算人体跑步时GRF曲线,并获得准确性较高的GRF特征。本研究建立的LSTM模型可以用于户外环境下监控跑步过程中的损伤风险。 展开更多
关键词 长短记忆模型 地面反作用力 无标记动作捕捉 跑步损伤
在线阅读 下载PDF
基于自适应辛几何模态分解−多元线性回归−卷积长短时记忆的台区电力负荷预测
7
作者 方磊 楚成博 +4 位作者 何映虹 冯隆基 刘福政 王宁 张法业 《现代电力》 北大核心 2025年第4期840-846,共7页
准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,AS... 准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。 展开更多
关键词 电力负荷预测 自适应辛几何模态分解 多元线性回归 卷积长短记忆网络
在线阅读 下载PDF
基于图卷积神经网络和长短时记忆网络的输电网宽频振荡定位
8
作者 李雨攸 顾洁 +1 位作者 吴佳庆 金之俭 《广东电力》 北大核心 2025年第5期54-64,共11页
新能源发电机组大规模接入电网引发的宽频振荡给电网稳定运行带来了隐患,快速准确的振荡源定位是消除振荡、保障系统安全稳定运行的重要基础。为提升子站与主站之间数据传输效率、解决信息缺失等问题,本文提出一种基于图卷积神经网络与... 新能源发电机组大规模接入电网引发的宽频振荡给电网稳定运行带来了隐患,快速准确的振荡源定位是消除振荡、保障系统安全稳定运行的重要基础。为提升子站与主站之间数据传输效率、解决信息缺失等问题,本文提出一种基于图卷积神经网络与长短时记忆网络结合的输电网宽频振荡定位模型。首先通过对电网运行数据进行高频采样,并经压缩感知稀疏化处理后得到压缩振荡数据;进一步将输电网拓扑结构和部分节点的振荡采样数据相结合,通过基于图卷积神经网络的全局振荡信息生成模型补全未知节点信息,形成节点特征矩阵;最后根据全网各节点振荡特征矩阵,采用长短时记忆网络算法实现振荡源定位。基于含直驱风电机组的四机两区域仿真模型验证,结果表明GCN补全数据的均方根误差(0.0319)显著优于对比模型,且所提模型定位准确率达96.93%,尤其对风电机组振荡源定位精度达99%,显著高于GCN-SVM(94.22%)等基准方法,证实该方法在部分可观条件下能有效融合拓扑与时空特征,为高比例新能源电网安全稳定运行提供可靠技术支撑。运用MATLAB/Simulink制作样本数据集,通过算例仿真验证了文中所提出的宽频振荡定位模型的可行性与有效性。 展开更多
关键词 宽频振荡 振荡源定位 振荡信息生成模型 图卷积神经网络 长短记忆网络 特征矩阵
在线阅读 下载PDF
基于长短时记忆神经网络的降压变换器自适应控制
9
作者 贺伟 严佳成 +1 位作者 周旺平 李洪杰 《控制理论与应用》 北大核心 2025年第9期1838-1848,共11页
基于深度强化学习的无模型控制方法将避免系统建模的复杂过程,回避较难处理的非线性系统控制问题,且具有优良的鲁棒性.本文针对带恒功率负载的直流降压变换器系统,基于长短时记忆神经网络提出一种无模型自适应控制策略.首先,定义一种由... 基于深度强化学习的无模型控制方法将避免系统建模的复杂过程,回避较难处理的非线性系统控制问题,且具有优良的鲁棒性.本文针对带恒功率负载的直流降压变换器系统,基于长短时记忆神经网络提出一种无模型自适应控制策略.首先,定义一种由连续电压误差信号组成的状态空间,此状态空间将误差信号构建为控制算法的输入状态;其次,基于参考电压构建离散动作空间并设计奖励函数,动作空间将算法输出转换为占空比,并基于被控系统下一时刻状态给予一个奖励信号评判算法控制效果;然后,将长短时记忆神经网络作为双深度Q网络的状态动作价值函数估计器,计算输入状态下各个决策的Q值,并选取Q值最高的决策作为最优决策输出;最后,对本方法控制下的带恒功率负载的直流降压变换器系统进行仿真和实验研究.实验结果证明,该控制策略具有优良的跟踪给定性能,当存在外界扰动时,该控制策略作用下的系统具有良好的鲁棒性. 展开更多
关键词 恒功率负载 直流降压变换器 长短记忆神经网络 双深度Q网络 深度强化学习
在线阅读 下载PDF
基于长短时记忆神经网络的舟山群岛海域长时多要素海浪预报模型
10
作者 范迦勒 赵文宇 +2 位作者 周桑君 周一帆 白晔斐 《海洋与湖沼》 北大核心 2025年第5期1073-1085,共13页
待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点... 待分解信号复杂度增大时传统单信号分解技术易产生过高特征空间维度的高频本征模态函数(intrinsic mode function,IMF),从而严重限制了长短时记忆神经网络(long short term memory,LSTM)的长时序预报能力。以舟山群岛南部外海某观测点所收集的海浪数据为基础,提出融合ICEEMDAN-VMD级联分解策略和LSTM的混合模型。该混合模型准确捕捉海洋波浪的非线性特征和长时序依赖规律,提高了复杂海况下对有效波高、有效波周期、波向的长时预报能力。与多变量LSTM模型相比,混合模型的48 h和72 h有效波高预测均方根误差(root mean square error,RMSE)降幅分别为53.9%和33.8%,有效波周期预测RMSE降幅分别为46.1%和39.1%,波向预测RMSE降幅分别为30.5%和23.9%。与EMD-LSTM模型相比,混合模型有效波高、有效波周期、波向的RMSE平均降幅分别为13.52%、17.79%、15.39%。 展开更多
关键词 信号分解 长短记忆神经网络 海浪预报 舟山群岛
在线阅读 下载PDF
基于长短时记忆网络的数控设备剩余寿命预测方法
11
作者 田丽晶 薛建华 何罗宁 《机床与液压》 北大核心 2025年第16期76-84,共9页
数控设备的可靠运行对制造业至关重要,其退化过程和剩余寿命预测是设备健康管理(PHM)的关键问题。从时间序列的角度分析数控设备的状态监测信息,提出一种基于信号处理和长短时记忆网络(LSTM)的数控设备剩余寿命预测方法。利用信号处理... 数控设备的可靠运行对制造业至关重要,其退化过程和剩余寿命预测是设备健康管理(PHM)的关键问题。从时间序列的角度分析数控设备的状态监测信息,提出一种基于信号处理和长短时记忆网络(LSTM)的数控设备剩余寿命预测方法。利用信号处理技术提取振动信号的时频域退化特征,通过Spearman相关性分析和核主成分分析(KPCA)进行特征选择和降维。引入退化程度指标D来量化设备的退化状态。在此基础上,构建基于长短时记忆(LSTM)网络的退化过程演变模型,用于预测退化程度指标,并结合线性回归模型实现了设备剩余寿命的估计。结果表明:所提LSTM模型能够有效捕捉设备退化的长期趋势和复杂动态特征,结合线性回归模型实现了设备剩余寿命的高精度估计。最后,利用XJTU-SY轴承退化数据集进行实验分析,通过对不同工况和故障类型的数据集进行退化趋势可视化和剩余寿命预测,验证了所提方法的有效性,为数控机床的可靠性研究提供了新思路。 展开更多
关键词 数控设备 退化模型 剩余寿命预测 长短记忆网络
在线阅读 下载PDF
基于蜣螂优化算法-双向长短时记忆网络的隧道软弱围岩变形预测
12
作者 张建 《地球科学与环境学报》 北大核心 2025年第4期634-645,共12页
隧道软弱围岩变形预测是确保隧道建设及施工运营安全等诸多环节中的核心要素。目前隧道软弱围岩变形预测主要依托围岩变形监测数据,而监测数据统计分析结果的可靠性、鲁棒性及泛化性依然不能满足工程建设的要求。针对该问题,对比LSTM、B... 隧道软弱围岩变形预测是确保隧道建设及施工运营安全等诸多环节中的核心要素。目前隧道软弱围岩变形预测主要依托围岩变形监测数据,而监测数据统计分析结果的可靠性、鲁棒性及泛化性依然不能满足工程建设的要求。针对该问题,对比LSTM、BiLSTM、CNN-LSTM、GRU、CNN-RNN模型的准确性、可靠性和稳定性,优选出BiLSTM模型为初步预测模型;考虑双向长短时记忆(BiLSTM)网络的灵活交互性和蜣螂优化(DBO)算法的数据驱动优势,构建基于深度学习的隧道软弱围岩变形预测模型——DBO-BiLSTM模型;最后,以西十高速铁路云岭一号隧道断面软弱围岩为案例,运用DBO-BiLSTM模型和BiLSTM模型对该隧道软弱围岩变形进行预测,并与监测数据进行对比。结果表明:DBO-BiLSTM模型较BiLSTM模型预测结果更优,其均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、平均百分比误差(MAPE)、判定系数(R^(2))分别为0.0016、0.0406、0.0318、1.43%、0.9985;云岭一号隧道软弱围岩变形情况均经历了先陡增后缓增、最终趋于稳定的过程,拱顶沉降最大累计变形量为14.79 mm,水平收敛最大累计变形量为16.80 mm。 展开更多
关键词 隧道工程 围岩 变形预测 DBO-Bilstm模型 深度学习 长短记忆网络 蜣螂优化算法
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
13
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 过零率 双向长短记忆网络 序注意力机制
在线阅读 下载PDF
基于时空关联规则与LSTM的机场进港延误等级预测
14
作者 李善梅 王端阳 +3 位作者 唐锐 李艳伟 李锦辉 纪亚宏 《中国安全科学学报》 北大核心 2025年第4期59-66,共8页
为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级... 为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级,并在此基础上,基于频繁模式增长(FP-Growth)算法挖掘机场进港延误的时空关联规则;然后,基于规则数据以及延误指标数据构建样本数据,作为长短时记忆(LSTM)模型的输入,输出为未来时段机场进港延误等级,同时引入注意力机制,学习不同规则对预测结果的影响程度;最后,采用美国航班数据进行算例分析。结果表明:总体预测的平均准确率达到0.91,不同时段的预测准确率均在80%以上,注意力层网络的连接权重可解释预测结果。 展开更多
关键词 空关联规则 长短记忆(lstm) 机场进港 延误等级 延误预测 空中交通管理
在线阅读 下载PDF
基于长短时记忆网络的山区中小流域降雨径流模拟 被引量:6
15
作者 张锦堂 任明磊 +4 位作者 李京兵 唐榕 钟小燕 王刚 王玉丽 《水电能源科学》 北大核心 2024年第8期33-37,共5页
洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪... 洪水预报是流域防洪减灾的重要非工程措施之一。目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强。以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪水模拟效果。结果表明,考虑降雨输入的空间差异可提升深度学习模型降雨径流模拟预测性能,且长短时记忆网络能够取得优于传统人工神经网络的精度;长短时记忆网络模型有效建立了流域降雨与径流间的复杂非线性关系,模型在所选流域内场次洪水的峰值模拟效果较好,训练、测试集场次洪水峰值合格率均在90%以上;长短时记忆网络内部结构特征与流域水文过程具有较好的相似性,对山区中小流域暴雨洪水非线性关系拟合效果突出。 展开更多
关键词 山丘区 长短记忆网络 中小河流 降雨径流模拟
在线阅读 下载PDF
基于长短时记忆网络和生成对抗网络的VRB储能系统虚假数据注入攻击检测 被引量:8
16
作者 陆鹏 付华 卢万杰 《电网技术》 EI CSCD 北大核心 2024年第1期383-393,共11页
随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据... 随着信息技术的不断发展,直流微电网储能系统已成为深度融合的信息物理系统,而精确的荷电状态估计对储能系统的实时监测和安全稳定运行至关重要。针对全钒液流电池(vanadium redox flow battery,VRB)储能系统荷电状态估计中,由虚假数据注入攻击导致的异常数据检测问题,提出一种基于长短时记忆网络和生成对抗网络的检测方法。首先,建立了VRB等效电路模型和虚假数据注入攻击模型;然后,通过训练长短时记忆网络和生成对抗网络组成的循环网络,将长短时记忆神经网络嵌入生成对抗网络框架作为生成器和鉴别器来分析电池时序数据,通过判别网络中的判别损失误差和生成网络中的重构残差得到异常损失进行综合判断;最后,以CEC-VRB-5kW型号电池为对象,并构造不同强度的虚假数据攻击进行实验,验证检测方法的准确性与可行性。结果表明,与经典循环神经网络、随机森林、自编码器、长短时记忆网络检测方法进行对比,所提方法具有较高的检测精度,在VRB储能系统荷电状态估计中能够有效辨识虚假数据攻击。 展开更多
关键词 长短记忆网络 生成对抗网络 储能系统 SOC估计 虚假数据注入攻击
在线阅读 下载PDF
基于双重分解和双向长短时记忆网络的中长期负荷预测模型 被引量:11
17
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短记忆网络 长序列处理
在线阅读 下载PDF
基于卷积长短时记忆网络的短时公交客流量预测 被引量:6
18
作者 陈静 张昭冲 +2 位作者 王琳凯 安脉 王伟 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期476-486,共11页
针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔... 针对传统的短时客流预测方法没有考虑到时序特征中跨时段客流之间的相似性问题,提出一种改进k-means聚类算法与卷积神经网络和长短时记忆网络相结合的短时客流量预测模型k-CNN-LSTM。通过k-means算法对跨时段时序数据进行聚类,使用间隔统计确定k值,构建交通流矩阵模型,采用CNN-LSTM网络处理具有时空特征的短时客流。该模型能够对具有空间相关性的数据进行较为准确的预测。使用真实数据集对模型进行检验和参数调优,实验结果表明:k-CNN-LSTM模型较其他模型有相对较高的预测精度。 展开更多
关键词 卷积神经网络 长短记忆网络 空数据预测 K-MEANS聚类 客流量预测
在线阅读 下载PDF
基于卷积神经网络和长短期记忆网络的轴向柱塞泵健康状态评估
19
作者 魏娜莎 刘江锋 +1 位作者 丁泽鹏 田志毅 《科学技术与工程》 北大核心 2025年第21期8889-8897,共9页
柱塞泵是液压系统重要的动力转换部件之一,其性能好坏直接影响液压系统的安全和稳定。为准确对柱塞泵的运行状态进行评估,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory netwo... 柱塞泵是液压系统重要的动力转换部件之一,其性能好坏直接影响液压系统的安全和稳定。为准确对柱塞泵的运行状态进行评估,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory network,LSTM)结合的柱塞泵健康状态评估方法,引入遗传算法对神经网络的参数进行优化。采集柱塞泵不同运行时刻的振动信号,利用小波包对振动信号进行能量特征提取,结合信号时频域特征,构建柱塞泵健康状态特征数据集,由CNN-LSTM方法进行健康状态识别分类,并通过样本熵评估分类结果。为验证该健康评估方法的有效性,将其应用到柱塞泵的试验测试中,结果表明:该方法的识别准确率达到了99%,能够有效提高对柱塞泵健康状态评估的准确性。 展开更多
关键词 轴向柱塞泵 卷积神经网络 长短记忆网络 健康评估
在线阅读 下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究 被引量:1
20
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 BERT 特征提取 双向长短记忆网络(Bilstm)
在线阅读 下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部