期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于TVF-EMD与LSTM神经网络耦合的月径流预测研究 被引量:11
1
作者 王文川 高畅 徐雷 《中国农村水利水电》 北大核心 2022年第2期76-81,89,共7页
为了有效提高非平稳非线性径流序列的预测精度,采用具有自适应序列特征的时变滤波经验模态分解(TVF-EMD)与长短期记忆神经网络(LSTM)耦合,构成TVF-EMD-LSTM预测模型。首先利用TVF-EMD方法自适应地将径流序列分解为高频序列和低频序列;进... 为了有效提高非平稳非线性径流序列的预测精度,采用具有自适应序列特征的时变滤波经验模态分解(TVF-EMD)与长短期记忆神经网络(LSTM)耦合,构成TVF-EMD-LSTM预测模型。首先利用TVF-EMD方法自适应地将径流序列分解为高频序列和低频序列;进而,利用LSTM神经网络对分解后的序列分别预测;最终,将预测结果加和重构为最终径流预测结果。提出的模型应用于洛河流域长水水文站月径流预测,并与LSTM模型、EMD-LSTM模型和CEEMDAN-LSTM模型进行对比。结果表明:TVF-EMD-LSTM神经网络耦合模型预测精度最高,预测误差最小。由此可见,TVF-EMD能更好地缓解模态混叠问题,可为径流序列的数据预处理提供更好的方式,提出的TVF-EMD耦合模型也为月径流预测提供了一种有效的新方法。 展开更多
关键词 月径流预测 时变滤波经验模态分解 短期记忆神经网络 耦合模型 水水文站
在线阅读 下载PDF
基于门控循环单元神经网络的测井曲线预测方法 被引量:8
2
作者 滕建强 邱萌 +3 位作者 杨明任 申辉林 曲萨 孙启鹏 《油气地质与采收率》 CAS CSCD 北大核心 2023年第1期93-100,共8页
为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LS... 为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LSTM)的输入门和遗忘门合并成更新门,输出门变成重置门,使模型结构简单,不易出现过拟合现象,保留LSTM模型的长时记忆功能,且能有效缓解梯度消失或梯度爆炸问题。以新疆油田直井和南海西部油田随钻测井的实际测井数据为例,选取已钻地层以及邻井的自然伽马、深感应电阻率、声波时差、密度和井径5条测井曲线数据作为训练样本输入到LSTM和GRU模型中进行学习训练,将训练好的模型用于预测未钻地层的测井曲线。应用结果表明,GRU比LSTM模型在新疆油田和南海西部油田预测测井曲线的平均相关系数分别提高13.78%和12.13%,平均均方根误差分别下降27.08%和42.17%,GRU模型能够准确地预测未钻地层测井曲线的变化趋势。 展开更多
关键词 随钻测井 记忆 测井曲线预测 未钻地层 门控循环单元神经网络
在线阅读 下载PDF
基于卷积长短期记忆网络的泄漏监测算法研究 被引量:3
3
作者 韩佳豪 陈小华 +4 位作者 姜海斌 李霖 李振 张皓 赵涓涓 《太原理工大学学报》 CAS 北大核心 2022年第5期924-932,共9页
针对长距离输送管道的应用中,沿线参数无法逐点测量,采用显式数学模型的方法并不完全能获得全部准确数值,提出一种基于卷积长短期记忆网络(CNN-LSTM)的流量预测方法。该方法使用CNN网络拟合空间特征,LSTM探索时间特征。采用从实际运行... 针对长距离输送管道的应用中,沿线参数无法逐点测量,采用显式数学模型的方法并不完全能获得全部准确数值,提出一种基于卷积长短期记忆网络(CNN-LSTM)的流量预测方法。该方法使用CNN网络拟合空间特征,LSTM探索时间特征。采用从实际运行管道中收集的真实数据训练出对应的深度学习模型,从而可根据沿线压力梯度预测流量,误差范围为0.3%~0.7%管道输量。将该模型用于泄漏监测,可以通过连续监测预测与实际流量之间的偏差发现管道泄漏。确定泄漏点位置时采用了基于相关压力点之间曲线距离算法。在实际管道上的现场测试表明,新算法不仅稳定有效,而且在管道设备运行过程中不会产生错误报警。 展开更多
关键词 输管道泄漏监测 卷积神经网络 短期记忆神经网络 压力坡降线
在线阅读 下载PDF
基于ConvLSTM-CNN预测太平洋长鳍金枪鱼时空分布趋势 被引量:4
4
作者 杜艳玲 马玉玲 +3 位作者 汪金涛 陈珂 林泓羽 陈刚 《海洋通报》 CAS CSCD 北大核心 2024年第2期174-187,共14页
海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperatu... 海洋渔场的变动由空间与环境因子共同驱动,渔场时空演变信息的精准预测是海洋捕捞的关键。本研究利用1995-2018年太平洋海域长鳍金枪鱼(Thunnus alalunga)的渔业生产统计数据,结合同期海洋环境数据包括海表面温度(Sea Surface Temperature,SST)、海表面盐度(Sea Surface Salinity,SSS)、初级生产力(Primary Productivity,PP)和溶解氧浓度(Dissolved Oxygen Concentration,DO),提出了一种融合卷积长短期记忆网络(Convolutional Long Short-Term Memory Networks,ConvLSTM)和卷积神经网络(Convolutional Neural Networks,CNN)的渔场时空分布预测模型。该模型引入特征提取模块,对时空因子进行编码,提取时空特征信息,同时采用CNN提取海洋环境变量的抽象特征,采用ConvLSTM提取渔业数据的高层时空关联信息,最后融合多种特征对渔场时空演变趋势进行预测。结果表明,模型的均方根误差为0.1036,较随机森林、BP神经网络和长短期记忆网络(Long Short Term Memory,LSTM)等传统渔场预报模型的预测误差降低15%~40%,预测的高产渔区与实际作业的高渔获量区匹配度为89%。该研究构建的渔场时空预测模型能够准确地预测出太平洋长鳍金枪鱼的时空分布,为太平洋长鳍金枪鱼的延绳钓渔业提供科学参考依据。 展开更多
关键词 鳍金枪鱼 时空分布 融合卷积短期记忆网络 卷积神经网络 太平洋
在线阅读 下载PDF
融合汉字输入法的BERT与BLCG的长文本分类研究 被引量:3
5
作者 杨文涛 雷雨琦 +1 位作者 李星月 郑天成 《计算机工程与应用》 CSCD 北大核心 2024年第9期196-202,共7页
现有的中文长文本分类模型中,没有考虑汉字读音、笔画等特征信息,因此不能充分表示中文语义;同时,长文本中常常包含大量与目标主题无关的信息,甚至部分文本与其他主题相关,导致模型误判。为此,提出了一种融合汉字输入法的BERT(BERT fuse... 现有的中文长文本分类模型中,没有考虑汉字读音、笔画等特征信息,因此不能充分表示中文语义;同时,长文本中常常包含大量与目标主题无关的信息,甚至部分文本与其他主题相关,导致模型误判。为此,提出了一种融合汉字输入法的BERT(BERT fused Chinese input methods,CIMBERT)、带有门控机制的长短期记忆卷积网络(BiLSTM fused CNN with gating mechanism,BLCG)相结合的文本分类方法。该方法使用BERT模型进行文本的向量表示,在BERT模型的输入向量中,采用了拼音和五笔两种常用的汉字输入法,增强了汉字的语义信息。建立了BLCG模型进行文本特征提取,该模型使用双向长短期记忆网络(BiLSTM)进行全局特征提取、卷积神经网络(CNN)进行局部特征提取,并通过门控机制(gating mechanism)动态融合全局特征和局部特征,解决了部分文本与目标主题无关导致模型误判的问题。在THUCNews数据集与Sogou语料库上对该方法进行了验证,其准确率为97.63%、95.43%,F1-score为97.68%、95.49%,优于其他文本分类模型。 展开更多
关键词 文本分类 BERT模型 卷积神经网络 短期记忆网络 门控机制
在线阅读 下载PDF
RF-MIP-LSTM股价预测模型 被引量:3
6
作者 张颖 李路 《计算机工程与应用》 CSCD 北大核心 2024年第17期272-281,共10页
长短时记忆(LSTM)神经网络在预测股价波动这类复杂的非线性系统中展现了较好的性能,然而LSTM模型没有考虑三个门控机制的耦合关系和长时记忆对模型输入的影响。通过增加输入门控的长时记忆窥视和耦合了三个门控机制的唯一门机制,增强了... 长短时记忆(LSTM)神经网络在预测股价波动这类复杂的非线性系统中展现了较好的性能,然而LSTM模型没有考虑三个门控机制的耦合关系和长时记忆对模型输入的影响。通过增加输入门控的长时记忆窥视和耦合了三个门控机制的唯一门机制,增强了长时记忆信息传递和模型的稳定性,构建了基于随机森林特征选择的RF-MIP-LSTM模型,并推导了模型的前向与反向传播算法。通过对中国农业银行、盐田港、格力电器三只股票价格和上证指数的预测和比较,表明RF-MIP-LSTM模型的收敛速度和预测精度均优于LSTM模型。 展开更多
关键词 股价预测 随机森林(RF) 短时记忆(LSTM)神经网络 时窥视孔
在线阅读 下载PDF
用于5G RF PA线性化的多频段通用数字预失真器 被引量:3
7
作者 方俊 叶焱 +2 位作者 苏日娜 刘太君 许高明 《微波学报》 CSCD 北大核心 2022年第6期90-94,共5页
文中提出了一种基于独热编码与长短时期记忆(LSTM)神经网络的多频段通用数字预失真非线性模型,它可以有效地对工作在多个频段的宽带射频功放进行线性化。在训练集中引入表示不同频率信号的不同独热编码,训练后的神经网络非线性模型可以... 文中提出了一种基于独热编码与长短时期记忆(LSTM)神经网络的多频段通用数字预失真非线性模型,它可以有效地对工作在多个频段的宽带射频功放进行线性化。在训练集中引入表示不同频率信号的不同独热编码,训练后的神经网络非线性模型可以在不改变网络结构和模型参数的情况下对不同频段的功率放大器进行预失真线性化。为了验证该方法的有效性,建立了两个分别工作于2.6 GHz和4.9 GHz的射频功放实验平台,在这两个频段预失真非线性建模的归一化均方误差(NMSE)均可达到-40 dB,然后使用100 MHz带宽5G NR信号,分别对这两个射频功放进行预失真线性化实验验证。实验结果表明,该多频段通用数字预失真器可以将这两个功放的邻信道泄漏比(ACLR)在中心频率下偏100 MHz处分别改善19.42 dB和17.91 dB,在中心频率上偏100 MHz处分别改善15.73 dB和15.17 dB,验证了所提非线性模型的有效性。 展开更多
关键词 第五代无线通信系统 功率放大器 数字预失真器 长短时期记忆神经网络 独热编码
在线阅读 下载PDF
基于深度学习的车辆时序动作检测算法 被引量:2
8
作者 卫星 杨国强 +1 位作者 陆阳 魏臻 《计算机工程与设计》 北大核心 2020年第12期3510-3516,共7页
为有效解决传统人工标注定位车辆行为存在的检测率低且相应的目标检测算法实用性差的弊端,提出一种基于深度学习的车辆时序动作检测算法,将视频中车辆直行行为设为背景行为,车辆转向、掉头等行为设定为目标行为。利用双流卷积网络对长... 为有效解决传统人工标注定位车辆行为存在的检测率低且相应的目标检测算法实用性差的弊端,提出一种基于深度学习的车辆时序动作检测算法,将视频中车辆直行行为设为背景行为,车辆转向、掉头等行为设定为目标行为。利用双流卷积网络对长视频中目标行为进行提取得到初级区域提议,利用双向长短记忆网络对得到的初级提议进行细化裁剪操作,实现对车辆行为类别的检测以及该行为的时间提取。实验结果表明,该算法与其它算法进行比较,在平均精度和时间交并比上均较优。 展开更多
关键词 深度学习 卷积神经网络 视频分析 车辆行为分析 双向短期记忆网络
在线阅读 下载PDF
CNN A-BLSTM network的双人交互行为识别 被引量:5
9
作者 赵挺 曹江涛 姬晓飞 《电子测量与仪器学报》 CSCD 北大核心 2021年第11期100-107,共8页
关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积... 关节点数据结合卷积神经网络用于双人交互行为识别存在图像化过程中对交互信息表达不充分且不能有效建模时序关系问题,而结合循环神经网络中存在侧重于对时间信息的表示却忽略了双人交互空间结构信息构建的问题。为此提出一种新的卷积神经网络结合加入注意机制的双向长短时期记忆网络(CNN A-BLSTM)模型。首先对每个人的关节点采用基于遍历树结构进行排列,然后对视频中的每一帧数据构建交互矩阵,矩阵的中的数值为排列后双人之间所有的关节点坐标间的欧氏距离,将矩阵进行灰度图像编码后所得图像依次送入CNN中提取深层次特征得到特征序列,然后将所得序列送入A-BLSTM网络中进行时序建模,最后送入Softmax分类器得到识别结果。将新模型用于NTU RGB D数据集中的11类双人交互行为的识别,其准确率为90%,高于目前的双人交互行为识别算法,验证了该模型的有效性和良好的泛化性能。 展开更多
关键词 双人交互行为识别 深度学习 卷积神经网络 双向短时期记忆网络 注意机制
在线阅读 下载PDF
基于BO-BiLSTM的超级电容器剩余寿命预测 被引量:1
10
作者 沈伟豪 林文文 楼功茂 《电工电能新技术》 CSCD 北大核心 2023年第4期59-67,共9页
为了提高超级电容器剩余使用寿命的预测精度,本文提出了一种贝叶斯优化与双向长短时记忆神经网络结合的预测模型(BO-BiLSTM),利用长滑动窗口处理容量数据来提高模型对容量衰退趋势的学习能力,达到对超级电容器剩余寿命精确预测的目的。... 为了提高超级电容器剩余使用寿命的预测精度,本文提出了一种贝叶斯优化与双向长短时记忆神经网络结合的预测模型(BO-BiLSTM),利用长滑动窗口处理容量数据来提高模型对容量衰退趋势的学习能力,达到对超级电容器剩余寿命精确预测的目的。通过对输入特征的研究和对比,选定了容量和循环数作为模型的输入,随后对滑窗大小、模型步长进行研究,发现长滑窗是模型成功的关键因素。实验模型的精度可以达到AEP=1.02%、RMSE=2.57%。在使用贝叶斯优化算法优化模型参数后,最终预测精度可以达到AEP=0.59%、RMSE=2.16%,具有较高的预测精度。 展开更多
关键词 超级电容器 剩余使用寿命 滑窗 贝叶斯优化 双向短时记忆神经网络
在线阅读 下载PDF
基于DE-LSTM模型的教育统计数据预测研究 被引量:7
11
作者 刘宝宝 杨菁菁 +1 位作者 陶露 王贺应 《计算机科学》 CSCD 北大核心 2022年第S01期261-266,共6页
当前,教育大数据呈现数据量大和数据类型多样的特点,准确有效地对教育统计数据进行分析和预测,对教育部门相关政策的制定和社会的发展具有重要的参考价值。文中以某市每年的招生人数为数据基础,提出了DE-LSTM模型,该模型通过差分进化算... 当前,教育大数据呈现数据量大和数据类型多样的特点,准确有效地对教育统计数据进行分析和预测,对教育部门相关政策的制定和社会的发展具有重要的参考价值。文中以某市每年的招生人数为数据基础,提出了DE-LSTM模型,该模型通过差分进化算法(DE)对长短期记忆神经网络(LSTM)中的隐含层节点和学习率进行优化,使所提模型具有较好的预测性能,并与现有的BP神经网络预测模型、LSTM神经网络预测模型进行了对比。实验结果表明,提出的DE-LSTM预测模型具有较高的预测精度。 展开更多
关键词 教育统计数据 时间序列预测 BP神经网络 短时期记忆网络 差分进化算法
在线阅读 下载PDF
应用机器学习对超晶格信号随机性的研究和评估
12
作者 李振曜 宋贺伦 应杰攀 《电子测量技术》 北大核心 2021年第15期79-83,共5页
本研究由对超晶格随机数发生器的信号随机性检测为出发点展开。通过使用人工智能方法对发生器产生的随机信号进行检测和评估。针对这种新随机信号采用了几种常见的机器学习方法,来预处理一部分信号并试图训练聚类或网络模型,然后对随机... 本研究由对超晶格随机数发生器的信号随机性检测为出发点展开。通过使用人工智能方法对发生器产生的随机信号进行检测和评估。针对这种新随机信号采用了几种常见的机器学习方法,来预处理一部分信号并试图训练聚类或网络模型,然后对随机数其他部分进行测试并判断随机性优劣。将此方法运用于比较正态分布随机数与超晶格发生器随机数,结论为超晶格随机数具有更好更明显的随机性,且各类机器学习方法在随机数性能检验中有价值,可以展望使用机器学习方法研究随机数及其相关的密码安全性的可能前景。 展开更多
关键词 随机数 随机数检测 机器学习 非监督学习 K-MEANS 神经网络 短程记忆网络 超晶格
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部