“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取...“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取控制结果与风电场实际出力以及储能状态间的时序信息,通过构建基于双向长短时记忆循环神经网络的控制模型,使得风电场在多种运行工况下能够快速、准确地得到储能系统调节结果。基于实际风电场数据仿真结果表明,本文所提控制策略能够保证在一定经济效益的前提下,将风储系统控制误差保持在0.50%~1.37%。展开更多
针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long ...针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long short-term memory with encoder-decoder,ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入-输出时间步长尺寸情况下对数据集切分重组,将处理后数据集输入到卷积神经网络,提取主要特征,得到多维矩阵。采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型,达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;预测损失最多降低1.411%,最少降低1.230%,实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。展开更多
传统电价预测往往采用基于时间序列的时域预测方法,未能充分利用电力市场的地域信息,忽略了跨区域输电条件下影响区内电价的域外因素,为进一步提升电价预测精度提出一种基于图卷积神经网络与长短时记忆网络(graph convolution network-l...传统电价预测往往采用基于时间序列的时域预测方法,未能充分利用电力市场的地域信息,忽略了跨区域输电条件下影响区内电价的域外因素,为进一步提升电价预测精度提出一种基于图卷积神经网络与长短时记忆网络(graph convolution network-long short term memory,GCN-LSTM)的时空预测算法。该算法首先通过建立图模型,描述地域分布的电力市场数据,并使用图卷积神经网络,提取所研究区域和周围地区传导到域内的域外信息;其次,将不同时刻图卷积神经网络提取到的信息构成时间序列,输入长短时循环网络,从而对日前市场边际电价进行预测。利用北欧电力交易所Nord Pool的运营数据进行算例分析,通过与对照算法对比,该算法具有更好的预测精准度和普适性。展开更多
文摘“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取控制结果与风电场实际出力以及储能状态间的时序信息,通过构建基于双向长短时记忆循环神经网络的控制模型,使得风电场在多种运行工况下能够快速、准确地得到储能系统调节结果。基于实际风电场数据仿真结果表明,本文所提控制策略能够保证在一定经济效益的前提下,将风储系统控制误差保持在0.50%~1.37%。
文摘针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long short-term memory with encoder-decoder,ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入-输出时间步长尺寸情况下对数据集切分重组,将处理后数据集输入到卷积神经网络,提取主要特征,得到多维矩阵。采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型,达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;预测损失最多降低1.411%,最少降低1.230%,实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。
文摘为了提高表面肌电信号(surface electromyography,sEMG)的手势分类准确率,通过惯性测量单元(inertial measurement unit,IMU)与采集姿态信号与sEMG的混合信号,提出了GRUBiLSTM双层网络的实时手势分类算法。第1层门控循环单元(gated recurrent unit,GRU)利用能量组合算子特征对混合信号进行突变点检测,定位运动态数据起始点;第2层双向长短时记忆循环神经网络(Bi-directional long short term memory,BiLSTM)使用能量核相图特征对运动态混合信号进行2个方向10种手势的分类。通过离线模型优化,分类算法识别时间低于40 ms,突变点检测精度88.7%以上,手势分类准确率为85%,信息传输率(informationtranslaterate, ITR)达到89.9 bits/min,与基于机器学习的分类算法相比,在准确率与计算效率上具有优势。
文摘传统电价预测往往采用基于时间序列的时域预测方法,未能充分利用电力市场的地域信息,忽略了跨区域输电条件下影响区内电价的域外因素,为进一步提升电价预测精度提出一种基于图卷积神经网络与长短时记忆网络(graph convolution network-long short term memory,GCN-LSTM)的时空预测算法。该算法首先通过建立图模型,描述地域分布的电力市场数据,并使用图卷积神经网络,提取所研究区域和周围地区传导到域内的域外信息;其次,将不同时刻图卷积神经网络提取到的信息构成时间序列,输入长短时循环网络,从而对日前市场边际电价进行预测。利用北欧电力交易所Nord Pool的运营数据进行算例分析,通过与对照算法对比,该算法具有更好的预测精准度和普适性。