期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
一种基于频域内推理计算的长短期记忆神经网络硬件加速器设计
1
作者 靳松 陈诗琪 《计算机学报》 北大核心 2025年第8期1781-1794,共14页
长短期记忆神经网络(Long Short-Term Memory,LSTM)可以捕捉到序列数据间长距离的依赖关系,因此在时间序列预测、自然语言分析和语音识别等领域得到广泛应用。然而,LSTM网络独特的门控机制和状态更新过程导致其推理计算的复杂度较高,参... 长短期记忆神经网络(Long Short-Term Memory,LSTM)可以捕捉到序列数据间长距离的依赖关系,因此在时间序列预测、自然语言分析和语音识别等领域得到广泛应用。然而,LSTM网络独特的门控机制和状态更新过程导致其推理计算的复杂度较高,参数量较大,对其在资源受限的边缘设备上的部署形成挑战。本文提出一种基于频域内推理计算的长短期记忆神经网络硬件加速器设计。采用循环分块矩阵对网络的权重参数进行压缩存储,结合快速傅里叶变换(Fast Fourier Transform,FFT)和频域激活函数实现频域内网络推理计算,避免在处理不同时间样本时频繁的时域-频域切换开销。采用坐标旋转数字计算机算法(Coordinate Rotation Digital Computer,CORDIC)替换频域内的乘法运算和超函数计算,实现LSTM的低功耗硬件部署。提出的硬件加速器在PYNQ-Z2开发板上进行了原型实现。面向开源时间序列数据集的实验结果表明,加速器实现了63.6μs的网络平均推理延迟,功耗1.743 W,相比时域LSTM推理计算延迟降低了44.2%,功耗降低6.4%。同时,BRAM和FIFO的资源占用率仅为5%和2%,相比时域LSTM推理计算分别降低了83%和91.2%。 展开更多
关键词 长短记忆神经网络 分块循环矩阵 坐标旋转数字计算机 频域推理计算 快速傅里叶变换
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法 被引量:2
2
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短记忆网络 深度光谱分区
在线阅读 下载PDF
基于循环神经网络的多模态数据层次化缓存系统设计
3
作者 张燕 《现代电子技术》 北大核心 2025年第4期52-56,共5页
为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集... 为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集卡来采集NVM上频繁访问4 KB数据块的历史访问记录,再将历史访问记录编码为访问向量后构建训练集,作为长短期记忆(LSTM)网络的输入,用于预测访问频率。在缓存过滤模块中,将访问频率预测结果高于设定阈值部分的4 KB多模态数据读取到DRAM中进行缓存。实验结果显示:所设计系统可最大程度地降低系统带宽占用情况,TLB缺失率低,缓存执行效率较高,面对大页面具备显著缓存优势。 展开更多
关键词 多模态数据 层次化缓存 循环神经网络 长短记忆(LSTM)网络 DRAM NVM 访问频率
在线阅读 下载PDF
基于长短期记忆循环神经网络的AGC实时控制策略 被引量:19
4
作者 李滨 王靖德 +1 位作者 梁水莹 韦昌福 《电力自动化设备》 EI CSCD 北大核心 2022年第3期128-134,共7页
大量新能源的接入以及电网中冲击负荷数量的剧增,使得电网对自动发电控制(AGC)策略提出了新的要求。简化AGC的一般控制流程,对比不同AGC策略的控制特性,在每个考核周期内选择控制效果更优的控制策略,并充分发挥多种控制策略在各自优势... 大量新能源的接入以及电网中冲击负荷数量的剧增,使得电网对自动发电控制(AGC)策略提出了新的要求。简化AGC的一般控制流程,对比不同AGC策略的控制特性,在每个考核周期内选择控制效果更优的控制策略,并充分发挥多种控制策略在各自优势工况下的性能,以得到优秀控制数据集;在此基础上,以长短期记忆(LSTM)循环神经网络为神经元构建AGC策略深度学习模型,并提出一种基于LSTM循环神经网络的数据驱动型AGC实时控制策略。仿真结果表明,基于深度学习的控制策略的整体性能优于任何单一控制策略。 展开更多
关键词 自动发电控制 控制策略 深度学习 长短记忆循环神经网络 数据驱动
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
5
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短记忆网络 门控循环神经网络
在线阅读 下载PDF
基于长短期记忆循环神经网络的伊拉克H油田碳酸盐岩储层渗透率测井评价 被引量:10
6
作者 杨旺旺 张冲 +3 位作者 杨梦琼 张亚男 汪明锐 孙康 《大庆石油地质与开发》 CAS CSCD 北大核心 2022年第1期126-133,共8页
伊拉克H油田碳酸盐岩储层孔隙结构复杂,孔隙类型多样,给渗透率测井评价工作带来了极大困难。针对这一问题,建立了基于测井序列信息的长短期记忆(LSTM)循环神经网络渗透率预测模型。从测井响应差异以及测井序列信息出发,优选敏感测井曲线... 伊拉克H油田碳酸盐岩储层孔隙结构复杂,孔隙类型多样,给渗透率测井评价工作带来了极大困难。针对这一问题,建立了基于测井序列信息的长短期记忆(LSTM)循环神经网络渗透率预测模型。从测井响应差异以及测井序列信息出发,优选敏感测井曲线,搭建LSTM循环神经网络,训练网络并优化网络参数,建立了基于LSTM循环神经网络的伊拉克H油田碳酸盐岩储层渗透率预测模型。应用该模型对伊拉克H油田进行渗透率测井评价,并将预测结果与灰色系统预测模型GM(0,N)进行对比。结果表明:相对于灰色系统预测模型的结果,基于LSTM循环神经网络的渗透率预测模型的均方根误差降低了29.47%,皮尔逊(Pearson)相关系数提高了6.59%,取得了较好的应用效果。该模型能够充分挖掘测井曲线与渗透率之间关系的信息,提升了储层渗透率评价精度。 展开更多
关键词 长短记忆循环神经网络 伊拉克H油田碳酸盐岩储层 渗透率 测井评价
在线阅读 下载PDF
应用长短期记忆循环神经网络的弱反射信号增强方法 被引量:4
7
作者 隋京坤 陈胜 +1 位作者 郑晓东 胡天跃 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期1-8,共8页
由于沉积环境的特殊性和复杂性,地下介质中不同反射界面的波阻抗差可能差异巨大。如果储层的有效反射信息较弱,在地震数据中极可能被强反射信息掩盖,不易被识别,影响了储层识别效果,因此亟需一种解释性处理技术突出弱反射信息。常规方... 由于沉积环境的特殊性和复杂性,地下介质中不同反射界面的波阻抗差可能差异巨大。如果储层的有效反射信息较弱,在地震数据中极可能被强反射信息掩盖,不易被识别,影响了储层识别效果,因此亟需一种解释性处理技术突出弱反射信息。常规方法一般是先从地震数据中分离出强反射分量,再将它削弱或删除。但如果地震子波提取不准确,减去法中强反射残留会引入虚假信号。文中提出了一种“升弱降强”的新思路,通过构建幂次反射系数映射模型缩小弱反射信号与强反射信号的相对差异。首先计算测井反射系数的幂次反射系数,将弱反射系数相对增大、强反射系数相对减小,得到拟反射系数序列;再用原始反射系数序列和拟反射系数序列分别与地震子波进行褶积运算,得到合成地震记录和拟合成地震记录,生成训练样本集;然后用该样本集训练长短期记忆(LSTM)循环神经网络,建立合成地震记录与拟合成地震记录的映射关系;最后将该网络应用于地震数据,增强了地震弱反射信号。模型和实际数据应用结果表明,该方法能有效增强地层本身引起的弱反射信号,提高地震数据的储层识别能力。 展开更多
关键词 拟反射系数 长短记忆(LSTM)循环神经网络 弱反射信号增强
在线阅读 下载PDF
基于循环神经网络模型的创伤重症患者临床结局的动态预测 被引量:3
8
作者 齐戈尧 徐进 金志超 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1241-1249,共9页
目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患... 目的 探讨基于循环神经网络(RNN)算法构建的动态预测模型用于创伤重症患者临床结局动态预测的价值,并研究动态策略和实时预测模型可行的搭建方案及路径。方法 本研究数据来源于美国重症监护医学信息数据库(MIMIC)-Ⅳ2.0。以创伤重症患者院内结局为预测目标,使用长短时记忆(LSTM)和门控循环单元(GRU)2种RNN算法分别在4、6和8 h时间窗下训练动态预测模型。使用灵敏度、特异度、F1值和AUC值对模型性能进行评价,并分析不同RNN算法和时间窗对模型性能的影响。在8 h时间窗下分别训练隐马尔科夫模型(HMM)、随机森林(RF)模型和logistic模型作为对照,横向比较2种RNN算法模型与对照模型的性能指标,并分析各模型的时间趋势变化。结果 在不同时间窗时,RNN动态模型在灵敏度、特异度、F1值和AUC值等4个性能指标上差异均有统计学意义(均P<0.001),在8 h时间窗时模型的各性能指标均高于6 h和4 h时;不同RNN算法(LSTM和GRU)间仅特异度差异有统计学意义(P=0.036)。横向比较结果显示,2种RNN算法模型和其他模型间各性能指标差异均有统计学意义(均P<0.001),2种RNN算法模型各指标均高于HMM、RF和logistic模型;各算法模型灵敏度、特异度和F1值的ICC均小于0.400(95% CI未包含0),而AUC值的ICC在统计学上证据不足(95% CI包含0)。结论 基于RNN算法的动态模型对创伤重症患者临床结局的预测效果较其他常见模型具有一定优势,且时间窗对模型性能可能存在影响。 展开更多
关键词 循环神经网络 长短记忆网络 门控循环单元 创伤 动态模型 临床结局 预测模型
在线阅读 下载PDF
基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究 被引量:1
9
作者 朱倩 章萌 +6 位作者 胡耀余 徐小林 陶丽新 张杰 罗艳侠 郭秀花 刘相佟 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2022年第1期1-9,共9页
目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病... 目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病合并呼吸系统疾病患者入院频数并与GAM对比,模型评价采用五折交叉验证法。结果:与GAM相比,LSTM-RNN具有较低的预测误差[均方根误差(RMSE)分别为21.21±3.30和46.13±7.60,P<0.01;平均绝对误差(MAE)分别为14.64±1.99和36.08±6.20,P<0.01]和较高的拟合优度(R^(2)值分别为0.79±0.06和0.57±0.12,P<0.01)。在性别分层中,预测女性入院频数时,LSTM-RNN三项指标均优于GAM(均P<0.05);预测男性入院频数时,两模型误差评价指标差异无统计学意义(均P>0.05)。在季节分层中,预测温暖季节的入院频数时,LSTM-RNN的RMSE和MAE均低于GAM(均P<0.05),R2值差异无统计学意义(P>0.05);预测寒冷季节入院频数时,两种模型的RMSE、MAE和R2值差异均无统计学意义(均P>0.05)。在功能区分层中,预测首都功能核心区入院频数时,LSTM-RNN的RMSE、MAE和R2值均优于GAM(均P<0.05)。结论:LSTM-RNN预测误差较小,拟合程度优,可作为污染天气提前精准配置医疗资源的预测手段。 展开更多
关键词 长短记忆循环神经网络 广义相加模型 呼吸系统疾病 糖尿病 日入院频数 预测
在线阅读 下载PDF
面向工业流程异常检测的均衡循环神经网络
10
作者 许荣斌 章宇 +3 位作者 谢莹 刘志强 张以文 闻立杰 《计算机集成制造系统》 EI CSCD 北大核心 2024年第12期4459-4467,共9页
智能制造的迅速发展给网络安全防护带来了巨大的机遇与挑战,各类安全威胁会造成严重的损失甚至灾难,已成为工业互联网亟待解决的问题。鉴于此,提出一种新的均衡循环神经网络,利用神经网络的适应性特点,采用长短期记忆网络(LSTM)的门电... 智能制造的迅速发展给网络安全防护带来了巨大的机遇与挑战,各类安全威胁会造成严重的损失甚至灾难,已成为工业互联网亟待解决的问题。鉴于此,提出一种新的均衡循环神经网络,利用神经网络的适应性特点,采用长短期记忆网络(LSTM)的门电路特性,针对工业互联网流数据随着时间推移异常检测准确性较低的问题,通过不同权重与当前输入数据重构得出遗忘门控、输入门控和输出门控。随后通过sigmoid激活函数求得预测结果,并将该结果作为门控循环单元网络(GRU)的网络层输入,由GRU网络层促使当前网络快速拟合,从而较快地获得较优的参数。本方法结合LSTM和GRU的优势,保留LSTM最后时刻的隐藏状态,作为下一层网络GRU的输入,使网络层的连接更加平滑,最大程度地保留LSTM所学习到的参数,获取隐藏特征,既可提高神经网络的精度,又可高效、快速地检测工业互联网络的异常。 展开更多
关键词 循环神经网络 长短记忆 门控循环单元 工业互联网 异常检测
在线阅读 下载PDF
基于一维卷积神经网络与长短期记忆网络结合的电池荷电状态预测方法 被引量:18
11
作者 倪水平 李慧芳 《计算机应用》 CSCD 北大核心 2021年第5期1514-1521,共8页
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流... 针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC。首先,通过一层一维卷积层从样本数据中提取出高级数据特征,并充分地利用输入数据的特征信息;其次,使用一层LSTM层保存历史输入信息,从而有效地预防重要信息的丢失;最后,通过一层全连接层输出电池SOC预测结果。使用电池的多次循环充放电实验数据训练提出的模型,分析对比不同超参数设置下1D CNN-LSTM模型的预测效果,并通过训练模型来调节模型的权重系数和偏置参数,从而确定最优的模型设置。实验结果表明,1D CNN-LSTM模型具有准确且稳定的电池SOC预测效果。该模型的平均绝对误差(MAE)、均方误差(MSE)和最大预测误差分别为0.402 7%、0.002 9%和0.99%。 展开更多
关键词 一维卷积神经网络 循环神经网络 长短记忆 荷电状态预测 电池
在线阅读 下载PDF
基于长短期记忆神经网络的城市交通速度预测 被引量:4
12
作者 吕开云 邱万锦 +2 位作者 龚循强 支君豪 汪宏宇 《东华理工大学学报(自然科学版)》 CAS 2023年第1期77-84,共8页
交通速度预测在智能交通系统中起着重要的作用,准确、快速的交通速度预测有利于及时掌握城市道路交通状况,能够有效实行交通诱导。针对交通速度具有极强的周期性,在工作日和非工作日之间存在较大差异,导致预测精度不高的问题,分别选取... 交通速度预测在智能交通系统中起着重要的作用,准确、快速的交通速度预测有利于及时掌握城市道路交通状况,能够有效实行交通诱导。针对交通速度具有极强的周期性,在工作日和非工作日之间存在较大差异,导致预测精度不高的问题,分别选取公开的工作日和非工作日交通速度数据,构建基于长短期记忆神经网络的城市交通速度预测模型。实验验证采用广州市20条路段的交通数据,结果表明,区分工作日和非工作日的平均绝对百分比误差、平均绝对误差和均方根误差的平均值比不区分均要小,说明区分工作日和非工作日可以有效地提高交通速度的预测精度。 展开更多
关键词 智能交通 交通速度预测 长短记忆神经网络 周期
在线阅读 下载PDF
基于双向长短期记忆神经网络的岩相预测方法 被引量:9
13
作者 熊玄辰 曹俊兴 +2 位作者 周鹏 许汉卿 程明 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期226-234,共9页
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度... 介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-LSTM模型训练建立输入数据与岩相的非线性映射关系。将该方法应用于四川某浅层河道砂体勘探区岩相预测,结果表明,基于Bi-LSTM构建的岩相预测方法优于普通循环神经网络和普通LSTM,能够快速确定地下岩相,有效指示河道。基于Bi-LSTM的岩相预测方法能有效提取输入数据与岩相信息的非线性映射关系,对少井地区的岩相预测工作有较高的实用价值。 展开更多
关键词 深度学习 循环神经网络 双向长短记忆神经网络 岩相预测
在线阅读 下载PDF
基于长短时记忆神经网络的河流水质预测研究 被引量:28
14
作者 张贻婷 李天宏 《环境科学与技术》 CAS CSCD 北大核心 2021年第8期163-169,共7页
准确高效地预测河流水质变化趋势对河流水环境治理与保护具有重要意义。该文利用广州市白坭河上自动监测站每2 h的水质数据,从单测站数据时序之间的相关性和上游测站的影响两方面,分别建立长短时记忆网络(LSTM)河流水质预测的循环神经... 准确高效地预测河流水质变化趋势对河流水环境治理与保护具有重要意义。该文利用广州市白坭河上自动监测站每2 h的水质数据,从单测站数据时序之间的相关性和上游测站的影响两方面,分别建立长短时记忆网络(LSTM)河流水质预测的循环神经网络模型。模型以氨氮浓度为输出变量,比较了不同输入变量下的模型预测效果,并以最优模型和常用的深度学习算法支持向量机(SVM)进行了比较。结果表明:单测站LSTM模型经输入变量特征选择后的预测结果比仅使用氨氮浓度单变量的时间序列预测更接近真实数值;对加入上游监测站的双测站LSTM模型,输入的变量经过特征选择时,模型预测效果优于全部水质变量作为输入的预测结果,也优于单测站LSTM模型;但不进行特征选择时,输入变量增加,模型学习到噪声而使精度下降;和SVM模型相比,最优特征组合的LSTM模型具有更好的预测效果。研究也表明,对输入变量进行特征选择后,LSTM模型是一种有潜力的河流水质预测方法。 展开更多
关键词 水质预测 长短记忆网络 循环神经网络 深度学习 特征选择
在线阅读 下载PDF
长短期记忆神经网络在季节性融雪流域降水-径流模拟中的应用 被引量:13
15
作者 党池恒 张洪波 +2 位作者 陈克宇 支童 卫星辰 《华北水利水电大学学报(自然科学版)》 2020年第5期10-18,33,共10页
可靠的径流模拟对流域水资源规划与管理意义重大。以岷江镇江关水文站实测径流为研究对象,通过与BP神经网络和Elman循环神经网络的对比,验证长短期记忆神经网络在受季节性融雪影响流域日尺度降水-径流模拟中的适用性,并进一步分析长短... 可靠的径流模拟对流域水资源规划与管理意义重大。以岷江镇江关水文站实测径流为研究对象,通过与BP神经网络和Elman循环神经网络的对比,验证长短期记忆神经网络在受季节性融雪影响流域日尺度降水-径流模拟中的适用性,并进一步分析长短期记忆神经网络的关键参数——时间步长对日径流模拟精度的影响。结果表明:①采用BP神经网络进行日径流过程模拟时会丢失流域状态信息,模拟效果最差;②Elman循环神经网络相比BP神经网络,具有相对有限的记忆能力,在积雪时段较长的岷江镇江关水文站控制流域上的模拟效果一般;③长短期记忆神经网络以其特殊的CEC单元和“门”结构,实现了流域状态的长期储存与更新,在日降水-径流模拟中的效果最佳;④通过多次试验发现,当长短期记忆神经网络的时间步长设置为60 d时,模拟精度最高,结合春末夏初的降水、径流和气温变化过程,认为60 d时间步长符合岷江流域实际情况。 展开更多
关键词 降水-径流模拟 季节性融雪 BP神经网络 Elman循环神经网络 长短记忆神经网络 岷江
在线阅读 下载PDF
引入外部记忆的循环神经网络的口语理解 被引量:2
16
作者 许莹莹 黄浩 《计算机工程与应用》 CSCD 北大核心 2019年第12期145-148,161,共5页
循环神经网络(RNN)越来越在口语理解(Spoken Language Understanding,SLU)任务中显示出优势。然而,由于梯度消失和梯度爆炸问题,简单循环神经网络的存储容量受到限制。提出一种使用外部存储器来提高记忆能力的循环神经网络。并在ATIS数... 循环神经网络(RNN)越来越在口语理解(Spoken Language Understanding,SLU)任务中显示出优势。然而,由于梯度消失和梯度爆炸问题,简单循环神经网络的存储容量受到限制。提出一种使用外部存储器来提高记忆能力的循环神经网络。并在ATIS数据集上进行了实验,并与其他公开报道的模型进行比较。结果说明,在口语理解任务上,提出的引入外部记忆的循环神经网络在准确性、召回率和F1值都有较明显提高,优于传统循环神经网络及其变体结构。 展开更多
关键词 口语理解 循环神经网络 长短记忆网络 神经图灵机
在线阅读 下载PDF
基于长短期记忆神经网络的地表太阳辐照度预测 被引量:16
17
作者 赵书强 尚煜东 +1 位作者 杨燕燕 李永华 《太阳能学报》 EI CAS CSCD 北大核心 2021年第3期383-388,共6页
针对地表太阳辐照度(GHI)短期预测问题,提出一种基于长短期记忆神经网络的短期太阳辐照度预测模型。采用递归结构的训练样本,以保证训练样本内部的时间耦合性。为验证所提模型预测GHI的有效性,采用算例与传统人工神经网络模型预测结果... 针对地表太阳辐照度(GHI)短期预测问题,提出一种基于长短期记忆神经网络的短期太阳辐照度预测模型。采用递归结构的训练样本,以保证训练样本内部的时间耦合性。为验证所提模型预测GHI的有效性,采用算例与传统人工神经网络模型预测结果进行对比分析。结果表明:基于长短期记忆神经网络预测模型将均方误差降低88.48%,表明所建模型更适用于GHI预测。 展开更多
关键词 太阳辐照度预测 循环神经网络 长短记忆神经网络 深度学习
在线阅读 下载PDF
基于LSTM循环神经网络的故障时间序列预测 被引量:394
18
作者 王鑫 吴际 +3 位作者 刘超 杨海燕 杜艳丽 牛文生 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第4期772-784,共13页
有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和... 有效地预测使用阶段的故障数据对于合理制定可靠性计划以及开展可靠性维护活动等具有重要的指导意义。从复杂系统的历史故障数据出发,提出了一种基于长短期记忆(LSTM)循环神经网络的故障时间序列预测方法,包括网络结构设计、网络训练和预测过程实现算法等,进一步以预测误差最小为目标,提出了一种基于多层网格搜索的LSTM预测模型参数优选算法,通过与多种典型时间序列预测模型的实验对比,验证了所提出的LSTM预测模型及其参数优选算法在故障时间序列分析中具有很强的适用性和更高的准确性。 展开更多
关键词 长短记忆(LSTM)模型 循环神经网络 故障时间序列预测 多层网格搜索 深度学习
在线阅读 下载PDF
基于循环神经网络的半监督动态软测量建模方法 被引量:20
19
作者 邵伟明 葛志强 +1 位作者 李浩 宋执环 《电子测量与仪器学报》 CSCD 北大核心 2019年第11期7-13,共7页
数据驱动的软测量技术被广泛应用于难测关键变量的在线实时预报。然而,在工业过程中,有标签样本通常十分稀少,且动态特性显著,导致传统有监督、静态的软测量建模方法性能不佳。为此,提出一种基于循环神经网络的建模方法,首先将传统带有... 数据驱动的软测量技术被广泛应用于难测关键变量的在线实时预报。然而,在工业过程中,有标签样本通常十分稀少,且动态特性显著,导致传统有监督、静态的软测量建模方法性能不佳。为此,提出一种基于循环神经网络的建模方法,首先将传统带有长短时记忆单元(LSTM)的循环神经网络(RNN)扩展为半监督模式,然后针对LSTM的不足,进一步提出一种基于注意力机制的改进方案。通过一个实际工业案例验证半监督LSTM-RNN在软测量应用中的有效性,以及所提出的改进方案的有效性。 展开更多
关键词 软测量 动态特性 半监督 循环神经网络 长短记忆单元 注意力机制
在线阅读 下载PDF
基于循环神经网络算法的水库调度模拟 被引量:9
20
作者 汤正阳 张迪 +3 位作者 林俊强 刘毅 彭期冬 尚毅梓 《水电能源科学》 北大核心 2021年第5期83-86,70,共5页
为探索深度学习算法在水库调度领域的应用,利用网络爬虫技术,收集了溪洛渡水电站的调度运行数据,基于RNN、LSTM、GRU3种循环神经网络,学习电站现有调度规则,构建了溪洛渡水库的出流量预测模型,并探究不同参数设定对模型精度和计算速度... 为探索深度学习算法在水库调度领域的应用,利用网络爬虫技术,收集了溪洛渡水电站的调度运行数据,基于RNN、LSTM、GRU3种循环神经网络,学习电站现有调度规则,构建了溪洛渡水库的出流量预测模型,并探究不同参数设定对模型精度和计算速度的影响,对比了3种模型的模拟性能,分析了影响水库调度的主要因素。研究结果表明,隐层数、训练批量、迭代次数、隐层节点数和批量值是影响模型精度和计算速度的主要参数;3种模型具备良好的学习能力,能够根据水库的历史调度数据,学习应对不同场景的调度规则,生成出流方案,可为调度决策方案的制定提供参考依据。 展开更多
关键词 水库调度 出流量预测 循环神经网络 长短记忆网络 门限循环单元网络
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部