针对某些发达城市因负荷波动大而导致的长期电力负荷预测精度低问题,提出了一种基于数据驱动线性聚类(data-driven linear clustering,DLC)的自回归积分滑动平均(auto-regressive integral moving average,ARIMA)预测方法。首先,利用线...针对某些发达城市因负荷波动大而导致的长期电力负荷预测精度低问题,提出了一种基于数据驱动线性聚类(data-driven linear clustering,DLC)的自回归积分滑动平均(auto-regressive integral moving average,ARIMA)预测方法。首先,利用线性特征作为聚类标准对每年的大型变电站负荷数据集进行预处理;然后,对得到的每个子序列构建最优自回归积分滑动平均模型,以预测其相应的未来负荷;最后,汇总所有的模型预测结果从而获得电力系统长期负荷预测结果。从误差分析和应用结果可知,理论和实践都验证了所提出的方法在保证建模精度的同时能够降低随机预测误差,从而获得更稳定、更精准的电力系统负荷预测结果。展开更多
针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间...针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。展开更多
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi...Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.展开更多
文摘针对某些发达城市因负荷波动大而导致的长期电力负荷预测精度低问题,提出了一种基于数据驱动线性聚类(data-driven linear clustering,DLC)的自回归积分滑动平均(auto-regressive integral moving average,ARIMA)预测方法。首先,利用线性特征作为聚类标准对每年的大型变电站负荷数据集进行预处理;然后,对得到的每个子序列构建最优自回归积分滑动平均模型,以预测其相应的未来负荷;最后,汇总所有的模型预测结果从而获得电力系统长期负荷预测结果。从误差分析和应用结果可知,理论和实践都验证了所提出的方法在保证建模精度的同时能够降低随机预测误差,从而获得更稳定、更精准的电力系统负荷预测结果。
文摘针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。
文摘Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy.