期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进长期循环卷积神经网络的海上风电功率预测 被引量:36
1
作者 周勇良 余光正 +2 位作者 刘建锋 宋子恒 孔培 《电力系统自动化》 EI CSCD 北大核心 2021年第3期183-191,共9页
准确的风电功率预测对海上风电安全并网具有重要意义。不同于陆地,海上具有气象因素复杂、风电出力波动显著等特点,使得海上风电功率预测精度难以满足工程实际要求。针对以上问题,文中提出一种基于改进长期循环卷积神经网络(LRCN)的预... 准确的风电功率预测对海上风电安全并网具有重要意义。不同于陆地,海上具有气象因素复杂、风电出力波动显著等特点,使得海上风电功率预测精度难以满足工程实际要求。针对以上问题,文中提出一种基于改进长期循环卷积神经网络(LRCN)的预测模型,用于超短期海上风电功率预测。首先,采用改进LRCN进行初步功率预测,即构建多卷积通道分别提取不同层次变量的时序特征,并通过具有前瞻性的改进Adam优化器提升网络收敛效果。其次,利用摇摆窗算法与波动特征聚类识别预测时段的出力波动类型。再次,针对不同的波动类型建立对应的误差修正模型,并输入经Xgboost算法筛选出的强相关特征因子,实现误差修正。最后,采用实际海上风电场数据进行实验,其结果表明所提方法能够有效预测超短期海上风电功率,且预测精度高于多种传统预测模型。 展开更多
关键词 海上风电 改进长期循环卷积神经网络 时序特征挖掘 波动 误差修正
在线阅读 下载PDF
基于改进卷积-门控网络及Informer的两种中长期风电功率预测方法
2
作者 任鑫 王一妹 +3 位作者 王华 周利 葛畅 韩爽 《现代电力》 北大核心 2025年第3期542-549,共8页
为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络... 为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络-门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)的时间尺度降维模型,通过CNN模块及GRU模块分别实现了长时间序列的融合和还原,以及降维后时间序列的预测;另一方面,基于Informer网络的多头注意力机制实现了序列长期依赖特征的挖掘。算例结果表明,两种方法在不同的场景下有着不同的适应性,在第10日的准确率和合格率分别达到74.21%/73.47%、71.81%/74.48%,与常规GRU、CNN、时间卷积网络模型相比,预测精度提升明显,预测效果良好。 展开更多
关键词 长期功率预测 长序列预测 卷积神经网络-门控循环单元 INFORMER 多头注意力
在线阅读 下载PDF
基于FFT-DC-GRU-NLA的中长期居民用电量预测模型
3
作者 章诚 申超 《现代电子技术》 北大核心 2025年第16期88-96,共9页
针对现有的中长期居民用电量预测模型中存在复杂电力数据建模难、信息表示能力差、模型预测精度低等问题,提出一种基于FFT-DC-GRU-NLA的中长期居民用电量预测模型。首先利用快速傅里叶变换(FFT)对用电量数据进行分解,通过频域分解提取... 针对现有的中长期居民用电量预测模型中存在复杂电力数据建模难、信息表示能力差、模型预测精度低等问题,提出一种基于FFT-DC-GRU-NLA的中长期居民用电量预测模型。首先利用快速傅里叶变换(FFT)对用电量数据进行分解,通过频域分解提取多周期分量,得到一组二维子序列;然后将其作为自主设计的信息表示模块的输入,通过融合卷积神经网络、门控循环单元和非局部注意力机制,实现了对二维子序列的多尺度信息表示和深度特征提取;最终,深度特征经过全连接层重新构建,并采用残差结构进行迭代预测。在一个居民用电量的公开数据集上与当前电力预测领域内的多个先进模型相比,所提模型在96、192、336、720这4个预测长度上均取得了最高的预测精度;此外,该模型分别在两个电力预测公开数据集上也取得了较好的预测精度。实验结果表明,所提模型能够有效提升中长期居民用电量预测的精度且具有较好的泛化性。 展开更多
关键词 长期用电量预测 快速傅里叶变换 卷积神经网络 门控循环单元 非局部注意力机制 多尺度信息 深度特征提取
在线阅读 下载PDF
基于卷积递归深度学习模型的句子级文本情感分类 被引量:3
4
作者 向进勇 刘小龙 +2 位作者 丁明扬 李欢 曹文婷 《东北师大学报(自然科学版)》 CAS 北大核心 2020年第2期73-79,共7页
针对卷积层和池化层的局部性,提出了一种CNN与RNN的联合架构.通过使用一个无监督的神经语言模型训练初始词嵌入,然后使用网络的预训练参数对模型进行初始化;将信息通过卷积层进行特征映射以及通过长短时记忆模型学习长期依赖关系;通过... 针对卷积层和池化层的局部性,提出了一种CNN与RNN的联合架构.通过使用一个无监督的神经语言模型训练初始词嵌入,然后使用网络的预训练参数对模型进行初始化;将信息通过卷积层进行特征映射以及通过长短时记忆模型学习长期依赖关系;通过轻微的超参数调优和词向量,在句子级文本情感分类中取得了出色的结果.使用循环层替代池化层来减少参数的数量以及卷积神经网络的复杂性.结果表明,该方法能够在减少本地信息丢失的同时,构建一个具有更少参数和更高性能的高效框架来捕获句子长期依赖关系. 展开更多
关键词 卷积神经网络 循环神经网络 自然语言处理 深度学习 文本情感分类 长期依赖
在线阅读 下载PDF
激光熔化沉积过程缺陷识别方法
5
作者 刘伟嵬 刘炳君 +1 位作者 刘焕强 刘泽远 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期1150-1158,共9页
激光熔化沉积加工过程中的缺陷萌生是制约激光熔化沉积技术发展的关键性问题.实现对缺陷的精确自动识别是提高激光熔化沉积技术应用水平的重要途径.提出了熔池瞬态特征提取算法,分析了熔池瞬态特征对沉积层熔合不良缺陷的影响关系,建立... 激光熔化沉积加工过程中的缺陷萌生是制约激光熔化沉积技术发展的关键性问题.实现对缺陷的精确自动识别是提高激光熔化沉积技术应用水平的重要途径.提出了熔池瞬态特征提取算法,分析了熔池瞬态特征对沉积层熔合不良缺陷的影响关系,建立了熔池瞬态特征数据集.对主流识别算法进行了模型训练测试,获取了相对最优模型ResNet 34.为解决ResNet 34训练损失拟合效果差、计算速度慢的问题,结合传统卷积网络和LSTM(long short-term memory)网络,建立了训练和测试精度高且计算速度快的LRCN 64模型,测试准确率达95.8%,实现了对熔合不良缺陷的识别,为实现沉积件在线无损检测提供了技术支撑. 展开更多
关键词 激光熔化沉积 熔池瞬态特征 熔合不良 长期循环卷积神经网络(lrcn) 残差神经网络(ResNet)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部