期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
较短的长序列时间序列预测模型 被引量:2
1
作者 徐泽鑫 杨磊 李康顺 《计算机应用》 CSCD 北大核心 2024年第6期1824-1831,共8页
针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Un... 针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。 展开更多
关键词 较短的长序列时间序列预测 序列序列 短期记忆 自注意力机制 特征重分配
在线阅读 下载PDF
基于核技巧改进的Informer模型的长序列时间序列预测方法 被引量:4
2
作者 潘立群 吴中华 洪标 《计算机科学》 CSCD 北大核心 2023年第S02期666-671,共6页
如今,学者们对长序列时间序列问题的预测主要基于类RNN模型,且其中大部分使用的损失函数是传统的均方误差(MSE)。但类RNN模型在预测任务中存在只能捕捉局部信息且计算开销会随着预测序列的增多迅速提升的问题。不仅如此,MSE损失函数无... 如今,学者们对长序列时间序列问题的预测主要基于类RNN模型,且其中大部分使用的损失函数是传统的均方误差(MSE)。但类RNN模型在预测任务中存在只能捕捉局部信息且计算开销会随着预测序列的增多迅速提升的问题。不仅如此,MSE损失函数无法捕捉长时间序列数据中普遍存在的非线性问题,且自身还存在对异常值敏感和鲁棒性较低的问题。基于以上背景,提出一种完全基于注意力机制的Informer模型,并在模型中使用基于核技巧改进的Kernal-MSE损失函数代替传统的MSE损失函数来解决长序列时间序列预测的问题。在多变量预测多变量的背景下,以3类数据中的8份数据集为例,对比改进后的Informer模型与经典的Informer模型,类RNN模型中的LSTM和GRU模型。结果表明,改进后的Informer模型预测精度更高,且精度的相对提升值随着原始数据量的增大而增大,适用于长序列时间序列预测问题。 展开更多
关键词 Informer模型 损失函数 核技巧 长序列时间序列预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部