The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X...The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.展开更多
The hot deformation simulation of a ZK60 magnesiuln alloy at different temperatures from 373 to 673 K and different strain rates of 0.1, 0.01 and 0.002 s^-1 was studied by using the Gleebe-1500 simulator. The plastic ...The hot deformation simulation of a ZK60 magnesiuln alloy at different temperatures from 373 to 673 K and different strain rates of 0.1, 0.01 and 0.002 s^-1 was studied by using the Gleebe-1500 simulator. The plastic deformation behavior was measured and the deformation activation energy was calculated. The microstructures of ZK60 magnesium alloy with an addition of neodymium during the deformation process were observed by using Polyvar-MET optical microscope and Tecnai G^2 20 TEM. The results show that the working hardening, the dynamic recovery and the dynamic recrystallization occur during the plastic deformation process at different temperatures and strain rates. The dynamic recrystallization starts when the temperature is over 473 K and the DRX grain size after hot deformation is only 5-10 μm. So the refined grains improve both the tensile strength and the elongation of alloys at room temperature. Neodymium is added into the alloy and a precipitate phase Mg12Nd that impedes the movement of dislocations is formed, which benefits to increasing mechanical properties of ZK60 magnesium alloy.展开更多
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金Project(2004BB8429) supported by Chongqing Municipal Science and Technology Commission, China
文摘The ignition-proof mechanism of ZM5 magnesium alloy added with 0.1% (mass fraction) rare earth (RE) was investigated. The oxide scales and substrates were characterized by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and tensile test. And an oxidation model of ZM5 alloy with RE was established. The results show that the ignition temperature of ZM5 alloy is particularly elevated from 654 to 823 ℃, the microstructure is refined, and the tensile strength is slightly improved from 168.2 to 174.6 MPa by adding 0.1% RE. A double-layer oxidation film formed on the alloy surface under high temperature mainly consists of MgO, RE203 and A1203, which is 2.5-3.5 μm in thickness. It is found that the forming of protective oxidation film on the thermodynamics is attributed to RE elements congregating on the surface of molten Mg alloy.
基金Project(2006BAE04B02-3)supported by the National Key Program of 11th Five-Year Plan of China
文摘The hot deformation simulation of a ZK60 magnesiuln alloy at different temperatures from 373 to 673 K and different strain rates of 0.1, 0.01 and 0.002 s^-1 was studied by using the Gleebe-1500 simulator. The plastic deformation behavior was measured and the deformation activation energy was calculated. The microstructures of ZK60 magnesium alloy with an addition of neodymium during the deformation process were observed by using Polyvar-MET optical microscope and Tecnai G^2 20 TEM. The results show that the working hardening, the dynamic recovery and the dynamic recrystallization occur during the plastic deformation process at different temperatures and strain rates. The dynamic recrystallization starts when the temperature is over 473 K and the DRX grain size after hot deformation is only 5-10 μm. So the refined grains improve both the tensile strength and the elongation of alloys at room temperature. Neodymium is added into the alloy and a precipitate phase Mg12Nd that impedes the movement of dislocations is formed, which benefits to increasing mechanical properties of ZK60 magnesium alloy.