期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进黏菌算法优化TCN−LSTM−MHSA的巷道锚杆(索)应力预测模型
1
作者 齐俊艳 车玉浩 +1 位作者 王磊 袁瑞甫 《工矿自动化》 2025年第5期129-139,共11页
锚杆(索)应力的变化过程呈现明显的短期突变与长期时序依赖特征,而传统单一预测模型对长期趋势建模能力有限且对局部突变敏感性不足,往往难以全面捕捉上述复杂特征。针对该问题,提出一种基于改进黏菌算法(ISMA)优化时间卷积网络(TCN)−... 锚杆(索)应力的变化过程呈现明显的短期突变与长期时序依赖特征,而传统单一预测模型对长期趋势建模能力有限且对局部突变敏感性不足,往往难以全面捕捉上述复杂特征。针对该问题,提出一种基于改进黏菌算法(ISMA)优化时间卷积网络(TCN)−长短期记忆网络(LSTM)−多头自注意力机制(MHSA)的锚杆(索)应力预测模型。在煤矿巷道锚杆(索)应力预测问题中,模型训练过程通常涉及超参数调整、学习率选择等复杂优化任务,为提升模型的训练效率与预测精度,提出ISMA,引入邻域搜索与动态步长因子增强局部搜索能力,融合人工蜂群搜索机制提升全局搜索效率,有效增强模型跳出局部最优解的能力。TCN−LSTM−MHSA模型采用TCN提取局部时序特征,利用LSTM学习数据的长期依赖关系,通过MHSA强化对全局时序依赖的建模,从而提高模型对锚杆(索)应力的预测能力。在TCN−LSTM−MHSA模型的训练中利用ISMA对学习率进行迭代寻优,以提高模型的预测精度和速度。实验结果表明:①与黏菌算法(SMA)、遗传算法(GA)、粒子群算法(PSO)、麻雀搜索算法(SSA)相比,ISMA优化策略在多个基准函数测试中表现出更优的收敛速度与寻优能力。②在应力预测实验中,通过消融实验验证了TCN,LSTM,MHSA模块的必要性。③ISMA优化TCN−LSTM−MHSA模型在MAE,RMSE及R 2等指标上均优于BP,GRU等主流预测模型,具有更高的预测精度和稳定性。 展开更多
关键词 锚杆()支护 锚杆()应力预测 黏菌算法 时间卷积网络 长短期记忆网络 多头自注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部