期刊文献+
共找到701篇文章
< 1 2 36 >
每页显示 20 50 100
基于特征综合评价和模型优化的锂离子电池健康状态估计方法
1
作者 黄凯 郝润凯 郭永芳 《电力系统及其自动化学报》 北大核心 2025年第5期131-140,共10页
针对特征评价指标性能单一、预测模型特征捕捉能力不足和超参数难以确定等问题,提出基于特征综合评价和模型优化的锂离子电池健康状态(state-of-health,SOH)估计方法。首先,从原理和统计角度构建特征的综合评价指标,选取指标得分较高的... 针对特征评价指标性能单一、预测模型特征捕捉能力不足和超参数难以确定等问题,提出基于特征综合评价和模型优化的锂离子电池健康状态(state-of-health,SOH)估计方法。首先,从原理和统计角度构建特征的综合评价指标,选取指标得分较高的特征作为模型输入;其次,结合卷积神经网络(convolutional neural networks,CNN)、高效局部注意力(efficient local attention,ELA)和双向门控循环单元(bi-directional gated recurrent unit,BiGRU)建立CNN-ELA-BiGRU预测模型,增强模型捕捉特征的能力;最后,利用金豺优化(golden jackal optimization,GJO)算法对模型进行超参数寻优,提高了模型的预测精度。对比实验结果表明,所提SOH估计方法具有良好的稳定性和鲁棒性。 展开更多
关键词 离子电池 特征综合评价指标 高效局部注意力 金豺优化算法 健康状态估计
在线阅读 下载PDF
采用全局健康因子和残差模型的锂离子电池健康状态估计 被引量:1
2
作者 胡循泉 耿莉敏 +5 位作者 舒俊豪 张文博 巫春玲 尉小龙 黄东 陈昊 《西安交通大学学报》 北大核心 2025年第4期105-117,共13页
为准确估计锂离子电池的健康状态(SOH),提出了一种卷积神经网络-残差网络-双向门控循环单元-注意力机制(CNN-Residual-BiGRU-Attention)模型和微调估计方法。首先,采用分段近似聚合算法对电池容量增量和恒流充电曲线进行降维,构建全局... 为准确估计锂离子电池的健康状态(SOH),提出了一种卷积神经网络-残差网络-双向门控循环单元-注意力机制(CNN-Residual-BiGRU-Attention)模型和微调估计方法。首先,采用分段近似聚合算法对电池容量增量和恒流充电曲线进行降维,构建全局健康因子;接着,利用卷积神经网络提取全局健康因子时序特征,通过注意力机制突出强相关特征,并引入残差网络保持信息完整性;最后,通过改进人工蜂群算法对模型超参数寻优,提升模型SOH估计精度。采用美国国家航空航天局和牛津大学锂离子电池数据集进行精度验证,结果表明:利用提出的微调估计方法,即使精度较差的卷积神经-长短期记忆模型,SOH估计结果的平均绝对误差e_( MAE)、平均绝对百分比误差e_( MAPE)和均方根误差e RMSE也均在2%以内;相较于卷积神经网络-双向门控循环单元-注意力机制模型,采用CNN-Residual-BiGRU-Attention模型对训练集比例为30%的同一电池SOH进行估计,得到的e_( MAE)、e_( MAPE)和e RMSE分别降低了41.86%、44.35%、42.11%;对训练集比例为40%的同类电池SOH进行估计,得到的e_( MAE)、e_( MAPE)和e RMSE分别降低了45.51%、45.93%、40.10%。该研究结果可为低比例训练集条件下准确估计锂离子电池的SOH提供理论参考。 展开更多
关键词 离子电池 健康状态估计 全局健康因子 改进人工蜂群算法 残差 双向门控循环单元
在线阅读 下载PDF
一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法 被引量:1
3
作者 张朝龙 陈阳 +3 位作者 刘梦玲 张俣峰 华国庆 阴盼昐 《储能科学与技术》 北大核心 2025年第3期1258-1269,共12页
为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间... 为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间、电流、电压、容量以及温度等数据。然后,对锂离子电池进行增量容量分析,提取增量容量(IC)曲线的面积作为锂离子电池的电特征;计算锂离子电池充电阶段的温度积分,作为温度特征;将曲线面积与温度相结合,用作锂离子电池SOH估计的联合特征增量容量面积-温度(ICA-T)。随后,利用CNN-LA-BiLSTM方法建立SOH估计模型,在模型中,引入局部注意力(LA)优化卷积神经网络(CNN)的权重和偏差,使用Huber损失函数优化模型参数从而获得良好的SOH估计效果。利用本实验室的2组锂离子电池数据开展测试,结果表明,提出的方法能有效地估计电池的SOH,平均绝对百分比误差(MAPE)为0.5794%,均方根误差(RMSE)为0.0099,决定系数(R2)为0.9961。与传统方法相比,本文提出的方法在电池SOH估计中表现出了更优的性能。 展开更多
关键词 离子电池 健康状态估计 卷积神经网络-局部注意力-双向长短期记忆神经网络 增量容量 Huber损失函数
在线阅读 下载PDF
融合CNN与Transformer的锂离子电池健康状态估计
4
作者 舒星 杨浩 +2 位作者 刘西 陈飞 胡远志 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期1-8,共8页
准确估计锂离子电池的健康状态(state of health,SOH)对保证电池的安全使用具有十分重要的意义。为了提高SOH估计精度,提出了一种融合卷积神经网络(convolutional neural network,CNN)和Transformer的锂离子电池SOH估计方法。首先,分析... 准确估计锂离子电池的健康状态(state of health,SOH)对保证电池的安全使用具有十分重要的意义。为了提高SOH估计精度,提出了一种融合卷积神经网络(convolutional neural network,CNN)和Transformer的锂离子电池SOH估计方法。首先,分析了牛津实验室测试得到的锂离子电池充放电循环数据,提取了部分等间隔电压对应的充电时间序列作为表征电池老化的健康特征,并利用Pearson相关系数法定量分析了健康特征与SOH直接的相关性。然后,将具有局部特征提取能力的CNN与具有自注意力全局特征提取能力的Transformer相结合进行SOH估计。为了进一步提高估算精度,采用贝叶斯优化算法对CNN-Transformer全局超参数进行寻优,得到最优模型参数组合,提高了模型计算速度和SOH估算精度。在8个电池中进行交叉验证,结果表明:所提出的方法可以保证SOH估算最大误差、均方根误差和平均绝对误差分别小于1.5%、0.75%、0.63%。并将提出的方法与4种传统深度学习算法进行比较分析,发现该方法具有更好的估算精度和泛化能力。 展开更多
关键词 离子电池 健康状态 贝叶斯优化 卷积神经网络 充电时间
在线阅读 下载PDF
联合变分模态分解和长短时记忆网络的锂离子电池健康状态估计 被引量:1
5
作者 陈红霞 丁国荣 +1 位作者 陈贵词 王文波 《电源学报》 CSCD 北大核心 2024年第S01期89-97,共9页
准确估计和预测锂离子电池的健康状态SOH(state-of-health)对新能源领域的发展至关重要,因此提出1种基于变分模态分解VMD(variational mode decomposition)和长短时记忆LSTM(long short-term memory)网络的锂离子电池容量衰减预测模型... 准确估计和预测锂离子电池的健康状态SOH(state-of-health)对新能源领域的发展至关重要,因此提出1种基于变分模态分解VMD(variational mode decomposition)和长短时记忆LSTM(long short-term memory)网络的锂离子电池容量衰减预测模型。首先采用VMD方法将原始电池容量衰减序列分解成比较单一的固有模态分量IMF(intrinsic mode function)序列,然后应用LSTM对分解得到的一系列IMF分量进行训练预测,最后对各IMF分量的预测值进行有效集成得到电池容量衰减序列的最终预测结果。基于美国国家航天局NASA(National Aeronautics and Space Administration)锂离子电池数据集选取的4块电池的放电容量衰减序列进行实验对比分析,结果表明:相较于LSTM、BiLSTM、EMD-LSTM、EMD-BiLSTM及CEEMDAN-LSTM方法,所提方法可以明显降低序列的复杂度,减少各IMF分量的模态混叠现象,具有很高的预测精度,优于其他预测模型,预测的最大平均绝对误差不超过5%,均方根误差和平均绝对百分比误差控制在4%之内。 展开更多
关键词 锂离子电池健康状态估计 变分模态分解 长短时记忆网络
在线阅读 下载PDF
锂离子电池健康状态估计及寿命预测研究进展综述 被引量:30
6
作者 熊庆 邸振国 汲胜昌 《高电压技术》 EI CAS CSCD 北大核心 2024年第3期1182-1195,共14页
随着锂离子电池的应用越来越广泛,锂电池健康状态的精确估计和剩余寿命的实时预测对于锂电池系统的安全运行和降低运维成本具有重要意义。锂电池内部复杂的物理化学反应和外部复杂工作条件,使得实现精准的健康状态估计和寿命预测具有挑... 随着锂离子电池的应用越来越广泛,锂电池健康状态的精确估计和剩余寿命的实时预测对于锂电池系统的安全运行和降低运维成本具有重要意义。锂电池内部复杂的物理化学反应和外部复杂工作条件,使得实现精准的健康状态估计和寿命预测具有挑战性。该文综述近年来锂电池健康状态估计和剩余使用寿命预测方法的研究现状,分析基于物理/数学模型、数据驱动、模型法和数据驱动融合,以及多种数据驱动融合的锂电池健康状态估计方法的优缺点及适用条件,并对比分析不同数据驱动类型的锂电池寿命预测方法。指出锂电池健康状态估计及寿命预测尚存在的问题,并对未来研究方向进行展望,对完善锂电池健康状态估计和寿命预测算法理论体系、指导实际应用技术具有重要意义。 展开更多
关键词 离子电池 状态估计 寿命预测 电化学模型 数据驱动技术
在线阅读 下载PDF
基于IViT的锂离子电池健康状态估计 被引量:2
7
作者 廖列法 占玉敏 刘映宝 《电子测量技术》 北大核心 2024年第18期63-70,共8页
准确预测锂离子电池的健康状态(SOH)至关重要。针对电池单个周期的不同阶段退化机制存在差异和实际运用场景下数据获取不完整等挑战,提出一种基于Involution-Vision Transformer(IViT)的锂离子电池SOH估计方法。从电压时间曲线中自动提... 准确预测锂离子电池的健康状态(SOH)至关重要。针对电池单个周期的不同阶段退化机制存在差异和实际运用场景下数据获取不完整等挑战,提出一种基于Involution-Vision Transformer(IViT)的锂离子电池SOH估计方法。从电压时间曲线中自动提取能有效表征锂离子电池退化信息的特征,使用Involution模块在不同位置上自适应地分配权重,利用Vision Transformer学习不同阶段的高级特征表示并捕获全局依赖关系。实验结果表明,IVIT的预测误差在0.5%左右,且当整体数据缺失50%的情况下误差仅为2%左右,证明了所提方法的有效性和稳定性。 展开更多
关键词 离子电池 健康状态 INVOLUTION Vision Transformer
在线阅读 下载PDF
锂离子电池健康状态估计方法研究现状与展望 被引量:7
8
作者 李卓昊 石琼林 +1 位作者 王康丽 蒋凯 《电力系统自动化》 EI CSCD 北大核心 2024年第20期109-129,共21页
锂离子电池作为一种重要的储能电池,近年来发展逐渐成熟并被广泛应用于各种工业领域,有效缓解了能源转型和环境污染的压力。为保障锂离子电池能够安全、高效地长期服役,降低运行成本,实时准确地估计电池的健康状态变得尤为重要。文中对... 锂离子电池作为一种重要的储能电池,近年来发展逐渐成熟并被广泛应用于各种工业领域,有效缓解了能源转型和环境污染的压力。为保障锂离子电池能够安全、高效地长期服役,降低运行成本,实时准确地估计电池的健康状态变得尤为重要。文中对锂离子电池健康状态估计方法的发展现状进行了综述。首先,介绍了锂离子电池的老化机制和健康状态的相关概念。其次,介绍了包括基于测试、基于模型、基于数据驱动、基于不同方法融合在内的传统健康状态估计方法,以及基于先进感知技术的新型健康状态估计方法,展示了不同方法的改进过程,并对储能系统中锂离子电池模组的健康状态估计方法进行了简要概述。作为一种新兴方法,基于先进感知的方法对电池内部信息进行感知,具有广阔的应用前景。然后,分析比较了这些方法的优缺点和改进角度,为面对不同问题情境时如何选择合适的方法提供参考。最后,为推动锂离子电池的健康状态估计方法的实际应用,提出了该领域面临的挑战,并展望了该领域未来的研究方向。 展开更多
关键词 离子电池 健康状态估计 电池老化 数据驱动 先进感知
在线阅读 下载PDF
基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计 被引量:3
9
作者 柯学 洪华伟 +5 位作者 郑鹏 李智诚 范培潇 杨军 郭宇铮 蒯春光 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期3059-3071,共13页
准确估计锂离子电池(lithium-ion battery,LIB)的健康状态(state of health,SOH)对于确保储能电站的安全稳定运行至关重要。然而,现有的数据驱动方法通常依赖手工特征提取,并且特征的时间尺度比较单一,很难进行高效且精确的电池健康状... 准确估计锂离子电池(lithium-ion battery,LIB)的健康状态(state of health,SOH)对于确保储能电站的安全稳定运行至关重要。然而,现有的数据驱动方法通常依赖手工特征提取,并且特征的时间尺度比较单一,很难进行高效且精确的电池健康状态评估。为了解决这些问题,提出了一种基于多时间尺度建模自动特征提取和通道注意力机制的健康状态估计模型。该模型首先将充电过程信息输入多个并行的膨胀卷积模块(dilation convolution module,DCM),从不同时间尺度进行自动特征提取,获得丰富且全面的特征表示。随后,不同尺度的特征通过融合后结合门控循环单元(gated recurrent unit,GRU)提取时间序列的长期依赖关系。模型进一步融入通道注意力机制(efficient channel attention,ECA),对历史信息进行相关性动态权重分配,关注显著特征。最后,在两个公开数据集上验证了本方法的优越性,并与其他常用深度学习模型进行了比较。结果表明,本模型具有较高的SOH估计精度和良好的迁移性,两个数据集上的均方根误差分别仅为0.0110和0.0095,在跨数据集的迁移实验中均方误差仅为0.0092。 展开更多
关键词 离子电池 健康状态 卷积神经网络 注意力机制 时间序列
在线阅读 下载PDF
基于差分热伏安法和高斯过程回归的锂离子电池健康状态估计 被引量:2
10
作者 朱浩然 陈自强 杨德庆 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第12期1925-1934,共10页
锂离子电池在工作过程中会发生容量衰退甚至恶化等现象,实现电池健康状态(SOH)的有效估计是电池管理系统发展的关键挑战.提出一种数据驱动模型与特征参数相融合的锂离子电池健康状态估计方法,使用差分热伏安(DTV)法对锂离子电池实验数... 锂离子电池在工作过程中会发生容量衰退甚至恶化等现象,实现电池健康状态(SOH)的有效估计是电池管理系统发展的关键挑战.提出一种数据驱动模型与特征参数相融合的锂离子电池健康状态估计方法,使用差分热伏安(DTV)法对锂离子电池实验数据进行预处理,提取6个有用的特征,建立以不同核函数的两步高斯过程回归(GPR)为核心的SOH估计模型.结果表明,建立的模型能在更好地逼近实验值的同时缩短训练和预测时间,SOH估计的平均绝对误差在0.67%~0.97%之间,相比单步GPR降低了20%~30%.因此,该模型对锂离子电池健康状态的估计有较高的鲁棒性和准确性. 展开更多
关键词 离子电池 健康状态 差分热伏安法 高斯过程回归
在线阅读 下载PDF
基于数据驱动的锂离子电池健康状态估计研究进展综述 被引量:6
11
作者 金帅 董静 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期45-59,共15页
锂离子电池(LIBs)在电气化交通、电化学储能和移动电子产品等领域广泛使用,精准评估其健康状态(SOH)是确保安全可靠应用的基础。数据驱动法是当前评估SOH的主流方法,该方法无需考虑电池内部复杂的物理化学反应,依赖于直接的数据分析,且... 锂离子电池(LIBs)在电气化交通、电化学储能和移动电子产品等领域广泛使用,精准评估其健康状态(SOH)是确保安全可靠应用的基础。数据驱动法是当前评估SOH的主流方法,该方法无需考虑电池内部复杂的物理化学反应,依赖于直接的数据分析,且具有较高的精度。本文从锂离子电池SOH影响因素入手分析了基于数据驱动的电池SOH估计方法的研究现状,着重比较了机器学习、滤波器和时间序列等方法实施SOH估计的原理、优缺点。最后,针对电动汽车实际应用场景,对SOH估计方法的未来发展趋势进行了展望。 展开更多
关键词 离子电池 健康状态 数据驱动 电动汽车
在线阅读 下载PDF
基于经验模态分解-灰色关联度分析-蒲公英优化器改进Elman网络的锂离子电池健康状态估计 被引量:7
12
作者 钱玉村 杨博 +2 位作者 郑如意 梁柏骁 吴鹏宇 《电网技术》 EI CSCD 北大核心 2024年第9期3695-3704,I0050,I0051-I0054,共15页
准确、可靠的锂离子电池健康状态(state-of-health,SOH)估计有助于提高电池设备的安全和稳定运行。针对目前SOH无法直接测量、健康特征难以提取和估计方法不足等问题,提出了一种基于经验模态分解-灰色关联度分析-蒲公英优化器(empirical... 准确、可靠的锂离子电池健康状态(state-of-health,SOH)估计有助于提高电池设备的安全和稳定运行。针对目前SOH无法直接测量、健康特征难以提取和估计方法不足等问题,提出了一种基于经验模态分解-灰色关联度分析-蒲公英优化器(empirical mode decomposition-dandelion optimizer,EMDDO)Elman的锂离子电池SOH估计方法。基于NASA Ames研究中心公开的锂离子电池老化测试数据和实际实验测试数据,提出利用经验模态分解(empirical mode decomposition,EMD)对电池老化数据进行信号分解,从而得到反映电池SOH的特征分量,然后利用灰色关联度分析(grey relation analysis,GRA)对特征分量进行相关性分析来选择模型输入。最后,应用蒲公英优化器(dandelion optimizer,DO)对Elman网络的参数进行优化来提高神经网络的估计性能。实验结果表明,该方法能够准确地估计出锂离子电池的SOH,其估计结果的R2始终大于98%,此外,通过对电池数据在不同训练集数量情况下的SOH估计验证,进一步证明了所提出的估计模型有着良好的泛化性和鲁棒性。 展开更多
关键词 离子电池 健康状态 经验模态分解 灰色关联度分析 蒲公英优化器 ELMAN网络
在线阅读 下载PDF
基于卷积Fastformer的锂离子电池健康状态估计 被引量:2
13
作者 申小雨 尹丛勃 《储能科学与技术》 CAS CSCD 北大核心 2024年第3期990-999,共10页
锂离子电池的健康状态(state of health,SOH)是电池管理系统的重要功能,对于电池的可靠运行和使用寿命具有重要意义。为了进一步提高数据驱动方法对锂离子电池SOH估计的精度,提出一种卷积Fastformer模型的SOH估计方法。首先,提取锂离子... 锂离子电池的健康状态(state of health,SOH)是电池管理系统的重要功能,对于电池的可靠运行和使用寿命具有重要意义。为了进一步提高数据驱动方法对锂离子电池SOH估计的精度,提出一种卷积Fastformer模型的SOH估计方法。首先,提取锂离子电池多个充电阶段的每次循环电压曲线、电流曲线,每个阶段各个曲线转换为统计健康特征来表征锂离子电池老化特性,并使用Pearson相关系数对所选统计特征进行了相关性分析,筛选出与容量相关性高的健康特征,消除特征冗余性。随后,融合卷积神经网络和具有线性复杂度的Fastformer神经网络的特点,使用卷积神经网络强大的特征提取能力挖掘健康特征的局部信息,利用Fastformer的多头附加注意力机制可以更高效地在复杂的长序列中总结全文信息。然后,为减少模型训练时间,利用正交实验法对模型超参数进行优化。最后,采用公开数据集将所提方法与CNN、GRU、RNN模型进行对比,验证卷积Fastformer模型的准确性,结果表明,平均绝对误差、均方根误差最大仅为0.25%,0.29%,相对误差在0.8%以内,具有较高的估计精度和稳定性。 展开更多
关键词 离子电池 健康状态估计 正交实验 卷积Fastformer
在线阅读 下载PDF
采用格拉姆角场-卷积神经网络-时序卷积网络混合模型的锂离子电池健康状态估计
14
作者 赵扬 耿莉敏 +5 位作者 胡循泉 胡兵 巫春玲 张文博 山世玉 陈昊 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第11期27-38,共12页
针对现有电池健康状态(SOH)估计存在估计精度低、时序特征捕捉不足的问题,提出了一种格拉姆角场-卷积神经网络-时序卷积网络(GAF-CNN-TCN)混合模型。利用GAF算法将不同长度的容量增量(IC)曲线转换成图像数据,并采用卷积神经网络从中提... 针对现有电池健康状态(SOH)估计存在估计精度低、时序特征捕捉不足的问题,提出了一种格拉姆角场-卷积神经网络-时序卷积网络(GAF-CNN-TCN)混合模型。利用GAF算法将不同长度的容量增量(IC)曲线转换成图像数据,并采用卷积神经网络从中提取特征;提出一种特征融合网络,将二维卷积神经网络从图像中提取的图片特征与一维卷积神经网络从IC序列中提取的时序特征进行融合;将提取的综合特征输入时序卷积网络模型中进行训练,实现了SOH的准确估计。利用美国国家航空航天局和牛津大学的锂离子电池数据集进行模型验证,结果表明:相较于长短期记忆(LSTM)模型,GAF-CNN-TCN混合模型输出的SOH与真实SOH之间的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了85.65%、86.12%、84.0%;相较于CNN-LSTM模型,所提模型的MAE、MAPE和RMSE分别降低了83.24%、83.75%、82.27%;相较于TCN模型,所提模型的MAE、MAPE和RMSE分别降低了76.92%、77.19%、76.01%。 展开更多
关键词 离子电池 电池健康状态 格拉姆角场 卷积神经网络 时序卷积网络
在线阅读 下载PDF
基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法 被引量:1
15
作者 崔显 陈自强 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期747-759,共13页
锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过... 锂离子电池健康状态(SOH)的准确估计对于保障电池系统安全运行具有重要意义.针对传统SOH估计方法在可变工况下失效的问题,提出了一种基于等效电路模型和稀疏高斯过程回归的锂离子电池SOH在线估计方法.通过两个在线滤波器,在恒流充电过程中动态地辨识了锂离子电池等效电路模型的各项参数,构建了工况不敏感的健康因子,结合稀疏高斯过程回归实现SOH的间接估计.该方法在多种工况下使用统一的信号处理方法和特征映射模型,兼具鲁棒性强和冗余度低的优点.实验结果表明,该方法在多种工况下的平均绝对误差不超过0.94%,均方根误差不超过1.12%,与现有方法相比,该方法在综合性能上具有显著优势. 展开更多
关键词 离子电池 健康状态 健康因子 粒子滤波 稀疏高斯过程回归
在线阅读 下载PDF
锂离子电池健康状态估计与剩余寿命预测 被引量:18
16
作者 董汉成 凌明祥 +1 位作者 王常虹 李清华 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第10期1074-1078,共5页
针对锂离子电池健康状态(state-of-health,SOH)估计与剩余有效工作时间(remaining useful life,RUL)预测进行探讨.提出了一种利用SOH参数反应电池状况,并且建模预测电池RUL的方法.改进了现有研究成果在RUL预测中不能更新其概率密度的缺... 针对锂离子电池健康状态(state-of-health,SOH)估计与剩余有效工作时间(remaining useful life,RUL)预测进行探讨.提出了一种利用SOH参数反应电池状况,并且建模预测电池RUL的方法.改进了现有研究成果在RUL预测中不能更新其概率密度的缺陷.同时应用支持向量回归机(SVR-PF)改进标准粒子滤波算法具有粒子贫化效应的缺点.仿真结果表明提出的参数准确地反应了电池的状况,同时也准确地预测了电池的RUL;SVR-PF具有比粒子滤波更强的平滑与预测能力. 展开更多
关键词 离子电池 健康状态 剩余有效工作时间 健康状态变量 支持向量回归机粒子滤波
在线阅读 下载PDF
基于注意力改进BiGRU的锂离子电池健康状态估计 被引量:19
17
作者 王凡 史永胜 +3 位作者 刘博亲 左玉洁 符政 ALI Jamsher 《储能科学与技术》 CAS CSCD 北大核心 2021年第6期2326-2333,共8页
锂离子电池的健康状态(state of health,SOH)是电池管理系统的核心问题,对其精确的评估能够保障电池的安全可靠运行。然而在实际应用中,容量较难直接测得,导致SOH估算困难。为了获得准确的SOH,本文提出一种基于注意力改进双向门控循环单... 锂离子电池的健康状态(state of health,SOH)是电池管理系统的核心问题,对其精确的评估能够保障电池的安全可靠运行。然而在实际应用中,容量较难直接测得,导致SOH估算困难。为了获得准确的SOH,本文提出一种基于注意力改进双向门控循环单元(BiGRU)的锂离子电池SOH估计方法。首先提取电池充放电曲线中的电压、电流与阻抗等参数,通过自编码器(auto encoder,AE)对其降维,提取特征量并减少数据间的冗余性。其次,引入注意力机制(attention mechanism,AM)对输入变量分配权重,突出对SOH估计起到关键作用的特征量。最后,利用BiGRU学习输入变量与容量之间的映射关系,捕获容量衰减下的长期依赖性。在不同充电倍率的电池数据集上的结果表明,该方法对不同类型电池的SOH皆可以实现高精度估计,均方根误差在1.1%以下。 展开更多
关键词 离子电池 健康状态 自编码器 注意力机制 双向门控循环神经网络
在线阅读 下载PDF
锂离子电池健康状态估计方法 被引量:7
18
作者 冯能莲 陈龙科 汤杰 《北京工业大学学报》 CAS CSCD 北大核心 2016年第11期1750-1755,共6页
为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电... 为研究动力锂离子电池的健康状态(state of health,SOH),根据SOH和荷电状态(state of charge,SOC)的定义以及电池的二阶电阻电容(resistance-capacitance,RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的SOH估计模型.通过分析电池循环寿命测试数据,利用恒流充电阶段电池电压曲线对SOH进行估计,并与试验数据进行了对比,在SOH值衰减至80%之前,SOH估计的相对误差均在±2%范围内,能较好地吻合试验结果.结果表明:所提出的估计方法具有可行性和精确性. 展开更多
关键词 离子电池 SOH估计 电压曲线
在线阅读 下载PDF
改进模型的锂离子电池健康状态估计 被引量:7
19
作者 常春 王少晋 +1 位作者 苏广伟 姜久春 《电池》 CAS 北大核心 2022年第6期646-650,共5页
为避免基于电化学阻抗谱的传统等效电路模型(TECM)的拟合失效、参数过多等问题,提出一种基于阻抗谱中频部分等效电路模型(MECM)的锂离子电池健康状态(SOH)估计方法。基于TECM,只选用阻抗谱中频部分作为模型搭建基础。融合传荷电阻和固... 为避免基于电化学阻抗谱的传统等效电路模型(TECM)的拟合失效、参数过多等问题,提出一种基于阻抗谱中频部分等效电路模型(MECM)的锂离子电池健康状态(SOH)估计方法。基于TECM,只选用阻抗谱中频部分作为模型搭建基础。融合传荷电阻和固体电解质相界面(SEI)膜电阻,形成一个新的电阻R SC,作为电池老化的衡量量。考虑到不同温度、充电倍率的影响,用所提出的方法对电池容量和SOH进行估计,SOH估计的最大均方根误差(RMSE)仅为0.90%,比TECM的平均RMSE减少了0.14%,且拟合参数减少了63.63%。 展开更多
关键词 离子电池 电化学阻抗谱(EIS) 等效电路模型(ECM) 健康状态(SOH)估计 中频
在线阅读 下载PDF
锂离子电池健康状态估计方法 被引量:13
20
作者 杨杰 解晶莹 +1 位作者 晏莉琴 尹鸽平 《电池》 CAS CSCD 北大核心 2019年第3期247-250,共4页
综述几种常见的锂离子电池健康状态(SOH)的定义及估计方法,包括实验法、模型法、数据驱动法及融合法,分析各类方法的优缺点:实验法的可靠性较高,但耗时长;模型法易于实现嵌入式管理,但单一的模型结构容易导致较大的估计误差;数据驱动法... 综述几种常见的锂离子电池健康状态(SOH)的定义及估计方法,包括实验法、模型法、数据驱动法及融合法,分析各类方法的优缺点:实验法的可靠性较高,但耗时长;模型法易于实现嵌入式管理,但单一的模型结构容易导致较大的估计误差;数据驱动法能够充分利用电池的运行数据;融合法能够发挥各模型及算法的优势,是开发电池健康状态诊断技术的重要研究内容。展望大数据背景下锂离子电池SOH估计方法的研究方向。 展开更多
关键词 离子电池 健康状态(SOH) 估计方法 大数据
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部