All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,...All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.展开更多
Vanadates and vanadium oxides are potential lithium-ion electrode materials because of their easy preparation and high capacity properties.This paper reports the electrochemical lithium-storage performance of VO2 and ...Vanadates and vanadium oxides are potential lithium-ion electrode materials because of their easy preparation and high capacity properties.This paper reports the electrochemical lithium-storage performance of VO2 and NaV2O5 composite nanowire arrays.Firstly,Na5V12O32 nanowire arrays are fabricated by a hydrothermal method,and then VO2 and NaV2O5 composite nanowire arrays are prepared by a reduction reaction of Na5V12O32 nanowire arrays in hydrogen atmosphere.Crystal structure,chemical composition and morphology of the prepared samples are characterized in detail.The obtained composite is used as an electrode of a lithium-ion battery,which exhibits high reversible capacity and good cycle stability.The composite obtained at 500℃presents a specific discharge capacity up to 345.1 mA·h/g after 50 cycles at a current density of 30 mA/g.展开更多
Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indica...Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.展开更多
基金the support of the Grant-in-Aid for JSPS Research Fellow.
文摘All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs.
基金Project(51201117)supported by the National Natural Science Foundation of China
文摘Vanadates and vanadium oxides are potential lithium-ion electrode materials because of their easy preparation and high capacity properties.This paper reports the electrochemical lithium-storage performance of VO2 and NaV2O5 composite nanowire arrays.Firstly,Na5V12O32 nanowire arrays are fabricated by a hydrothermal method,and then VO2 and NaV2O5 composite nanowire arrays are prepared by a reduction reaction of Na5V12O32 nanowire arrays in hydrogen atmosphere.Crystal structure,chemical composition and morphology of the prepared samples are characterized in detail.The obtained composite is used as an electrode of a lithium-ion battery,which exhibits high reversible capacity and good cycle stability.The composite obtained at 500℃presents a specific discharge capacity up to 345.1 mA·h/g after 50 cycles at a current density of 30 mA/g.
基金Projects(51472211,51502256)supported by the National Natural Science Foundation of ChinaProjects(2016GK4005,2016GK4030)supported by the Strategic New Industry of Hunan Province,ChinaProject(13C925)supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘Using low-cost FePO4·2H2O as iron source,Na2FePO4F/C composite is prepared by alcohol-assisted ball milling and solid-state reaction method.The XRD pattern of Na2FePO4F/C composite demonstrates sharp peaks,indicating high crystalline and phase purity.The SEM and TEM images reveal that diameter of the spherical-like Na2FePO4F/C particles ranges from 50 to 300 nm,and HRTEM image shows that the surface of Na2FePO4F/C composite is uniformly coated by carbon layer with a average thickness of about 3.6 nm.The carbon coating constrains the growth of the particles and effectively reduces the agglomeration of nanoparticles.Using lithium metal as anode,the composite delivers a discharge capacities of 102.8,96.4 and 90.3 mA·h/g at rates of 0.5C,1C and 2C,respectively.After 100 cycles at 0.5C,a discharge capacity of 98.9 mA·h/g is maintained with capacity retention of 96.2%.The Li+diffusion coefficient(D)of Na2FePO4F/C composite is calculated as 1.71×10^–9 cm^2/s.This study reveals that the simple solid state reaction could be a practical and effective synthetic route for the industrial production of Na2FePO4F/C material.