期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
主从特征融合驱动的铝型材表面缺陷检测
被引量:
9
1
作者
刘孝保
张嘉祥
+1 位作者
阴艳超
刘佳
《计算机集成制造系统》
EI
CSCD
北大核心
2023年第1期192-199,共8页
针对因仅考虑纹理特征而造成铝型材表面缺陷检测精度较低的问题,提出一种主从特征融合驱动的表面缺陷检测模型。该模型的构建主要包括3个部分:首先采用经Focal-Loss损失函数优化的UNet模型完成缺陷分布不均匀的样本分割与定位;然后集合...
针对因仅考虑纹理特征而造成铝型材表面缺陷检测精度较低的问题,提出一种主从特征融合驱动的表面缺陷检测模型。该模型的构建主要包括3个部分:首先采用经Focal-Loss损失函数优化的UNet模型完成缺陷分布不均匀的样本分割与定位;然后集合卷积神经网络(CNN)与反向传播神经网络(BPNN)构建融合图像纹理特征、梯度信息和缺陷形状特征的主从特征预分类层;最后通过级联特定模糊规则的模糊神经网络完成缺陷的最终分类。利用阿里天池比赛的铝型材数据集中的5类缺陷样本对模型进行了实验验证,平均分类检测精度达到97.2%,为铝型材表面缺陷检测提供了新方法。
展开更多
关键词
铝型材表面缺陷检测
主从特征融合驱动
卷积神经网络
反向传播神经网络
模糊神经网络
在线阅读
下载PDF
职称材料
题名
主从特征融合驱动的铝型材表面缺陷检测
被引量:
9
1
作者
刘孝保
张嘉祥
阴艳超
刘佳
机构
昆明理工大学机电工程学院
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2023年第1期192-199,共8页
文摘
针对因仅考虑纹理特征而造成铝型材表面缺陷检测精度较低的问题,提出一种主从特征融合驱动的表面缺陷检测模型。该模型的构建主要包括3个部分:首先采用经Focal-Loss损失函数优化的UNet模型完成缺陷分布不均匀的样本分割与定位;然后集合卷积神经网络(CNN)与反向传播神经网络(BPNN)构建融合图像纹理特征、梯度信息和缺陷形状特征的主从特征预分类层;最后通过级联特定模糊规则的模糊神经网络完成缺陷的最终分类。利用阿里天池比赛的铝型材数据集中的5类缺陷样本对模型进行了实验验证,平均分类检测精度达到97.2%,为铝型材表面缺陷检测提供了新方法。
关键词
铝型材表面缺陷检测
主从特征融合驱动
卷积神经网络
反向传播神经网络
模糊神经网络
Keywords
surface defect detection of aluminum profiles
master-slave feature fusion drive
convolutional neural network
back propagation neural network
fuzzy neural network
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
主从特征融合驱动的铝型材表面缺陷检测
刘孝保
张嘉祥
阴艳超
刘佳
《计算机集成制造系统》
EI
CSCD
北大核心
2023
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部