期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测
被引量:
13
1
作者
徐彬泰
孟祥鹿
+3 位作者
田安琪
孙勇健
曹立斌
江颖洁
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2018年第2期162-168,共7页
为了提高铅酸电池荷电状态(SOC)的预测准确率,该文提出一种基于粒子群优化的高斯过程回归(PSO-GPR)算法。该算法的核心思想是通过粒子群优化(PSO)算法来解决高斯过程回归(GPR)模型中的超参数优化问题。PSO-GPR首先随机生成一个粒子群,...
为了提高铅酸电池荷电状态(SOC)的预测准确率,该文提出一种基于粒子群优化的高斯过程回归(PSO-GPR)算法。该算法的核心思想是通过粒子群优化(PSO)算法来解决高斯过程回归(GPR)模型中的超参数优化问题。PSO-GPR首先随机生成一个粒子群,群中的每个粒子包含对应的GPR超参数信息。随后执行如下迭代步骤:根据当前每个粒子的超参数信息训练对应的GPR模型并评估该模型的性能,结合适应度函数和每个模型的评估结果计算出每个粒子的适应度,并更新每个粒子中的超参数信息;经过多次迭代后,找到粒子群中适应度最小的粒子;最后从该粒子中提取相应的超参数信息,并训练最终的GPR预测模型。在铅酸电池数据集上的实验结果表明,所提方法优于对比模型。
展开更多
关键词
铅酸电池荷电状态
高斯过程回归
粒子群优化
超参数优化
在线阅读
下载PDF
职称材料
题名
基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测
被引量:
13
1
作者
徐彬泰
孟祥鹿
田安琪
孙勇健
曹立斌
江颖洁
机构
国网山东省电力公司信息通信公司
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2018年第2期162-168,共7页
文摘
为了提高铅酸电池荷电状态(SOC)的预测准确率,该文提出一种基于粒子群优化的高斯过程回归(PSO-GPR)算法。该算法的核心思想是通过粒子群优化(PSO)算法来解决高斯过程回归(GPR)模型中的超参数优化问题。PSO-GPR首先随机生成一个粒子群,群中的每个粒子包含对应的GPR超参数信息。随后执行如下迭代步骤:根据当前每个粒子的超参数信息训练对应的GPR模型并评估该模型的性能,结合适应度函数和每个模型的评估结果计算出每个粒子的适应度,并更新每个粒子中的超参数信息;经过多次迭代后,找到粒子群中适应度最小的粒子;最后从该粒子中提取相应的超参数信息,并训练最终的GPR预测模型。在铅酸电池数据集上的实验结果表明,所提方法优于对比模型。
关键词
铅酸电池荷电状态
高斯过程回归
粒子群优化
超参数优化
Keywords
state of charge of lead-acid batteries
Gaussian process regression
particle swarmoptimization
hyperparameter optimization
分类号
TM912.1 [电气工程—电力电子与电力传动]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测
徐彬泰
孟祥鹿
田安琪
孙勇健
曹立斌
江颖洁
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2018
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部