Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The...Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.展开更多
The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affect...The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.展开更多
Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrr...Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.展开更多
基金supported by the National Natural Science Foundation of China (51179182)Shinan Scientific and Technological R&D Foundation of Qingdao City, China (P2010-1-ZH-005)+1 种基金Ph.D. Foundation of Shandong Province, China (BS2009HZ002)K. C. Wong Education Foundation, Hong Kong, China (20061231)~~
文摘Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.
基金Project(DY135-B2-15) supported by the China Ocean Mineral Resource R&D AssociationProject(2015ZX07205-003) supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026) supported by the National Natural Science Foundation of China
文摘The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.
基金Project(2010CB630903) supported by the National Basic Research Program of ChinaProject(51374249) supported by the National Natural Science Foundation of China
文摘Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.