In this research work, extraction and purification of germanium from zinc leach residues(ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy(AAS) tests show that contents of germanium, ...In this research work, extraction and purification of germanium from zinc leach residues(ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy(AAS) tests show that contents of germanium, iron, lead, and zinc within the leaching residue were 105×10^(-6), 3.53%, 10.35%, and 8.8%, respectively. XRD results indicate that the main minerals were in different forms of sulfates(CaSO_4·2H_2O, PbSO_4 and ZnSO_4·6H__2O), silicate(SiO_2), and oxide(Fe_2O_3). Dissolution of leaching filter cake was carried out using 5 parameters and each in 4 levels(acid concentration, temperature, time, liquid-to-solid ratio, and stirring speed) by Taguchi method(L_(16)), and then optimization of the effective parameters by response surface method. Under optimum conditions, zinc and germanium dissolution efficiencies were 88.71% and 8%, respectively. Leaching tests with sulfuric acid(added di-ammonium oxalate monohydrate) and hydrochloric acid(HCl) on the residues obtained from previous-stage sulfuric acid dissolution, yielded germanium and iron recoveries of 83%, 88%, 40%, and 90%, respectively. Thus, leaching experiment with sulfuric acid(added di-ammonium oxalate monohydrate) was superior to that with hydrochloric acid due to high and low extraction amounts of germanium and iron, respectively. Precipitation experiments revealed that germanium purification with tannic acid presented a better result compared to sodium hydroxide and ammonia. Under optimum conditions, contents of germanium and iron in the solution after precipitation were 0.1505% and 14.7% with precipitation yields of 91% and 52%, respectively.展开更多
An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+H...An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system(ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching,and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of0.9-37.5 ng/L, the relative standard deviation of each element is within 1.1%-4.8%, and the recovery of each element is 90%-108%.展开更多
文摘In this research work, extraction and purification of germanium from zinc leach residues(ZLR) were investigated. The results of ICP, XRF, and atomic adsorption spectroscopy(AAS) tests show that contents of germanium, iron, lead, and zinc within the leaching residue were 105×10^(-6), 3.53%, 10.35%, and 8.8%, respectively. XRD results indicate that the main minerals were in different forms of sulfates(CaSO_4·2H_2O, PbSO_4 and ZnSO_4·6H__2O), silicate(SiO_2), and oxide(Fe_2O_3). Dissolution of leaching filter cake was carried out using 5 parameters and each in 4 levels(acid concentration, temperature, time, liquid-to-solid ratio, and stirring speed) by Taguchi method(L_(16)), and then optimization of the effective parameters by response surface method. Under optimum conditions, zinc and germanium dissolution efficiencies were 88.71% and 8%, respectively. Leaching tests with sulfuric acid(added di-ammonium oxalate monohydrate) and hydrochloric acid(HCl) on the residues obtained from previous-stage sulfuric acid dissolution, yielded germanium and iron recoveries of 83%, 88%, 40%, and 90%, respectively. Thus, leaching experiment with sulfuric acid(added di-ammonium oxalate monohydrate) was superior to that with hydrochloric acid due to high and low extraction amounts of germanium and iron, respectively. Precipitation experiments revealed that germanium purification with tannic acid presented a better result compared to sodium hydroxide and ammonia. Under optimum conditions, contents of germanium and iron in the solution after precipitation were 0.1505% and 14.7% with precipitation yields of 91% and 52%, respectively.
基金Project(21271187)supported by the National Natural Science Foundation of ChinaProject(cstc2013jcyj A10088)supported by the Chongqing Natural Science Foundation,China+1 种基金Projects(2013FJ3093,2013SK3268)supported by the Science and Technology Project of Hunan Province,ChinaProject(KJZH14217)supported by Achievement Transfer Education in Chongqing,China
文摘An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system(ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching,and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of0.9-37.5 ng/L, the relative standard deviation of each element is within 1.1%-4.8%, and the recovery of each element is 90%-108%.