Magnetite is a kind of iron ore that is difficult to carburize.In order to improve the carburizing performance of magnetite pellet,pre-oxidation treatment was carried out,and the oxidation,reduction and carburization ...Magnetite is a kind of iron ore that is difficult to carburize.In order to improve the carburizing performance of magnetite pellet,pre-oxidation treatment was carried out,and the oxidation,reduction and carburization behaviors of magnetite pellet were investigated in this study.The magnetite pellet was oxidized in the air and carburized in CO-CO_(2)-H_(2) gas mixtures,the oxidation,reduction and carburization behaviors were demonstrated by detecting phase change,microstructure,carburizing index via thermogravimetry,X-ray diffraction(XRD),infrared carbon-sulfur analyzer,and scanning electron microscope(SEM).The results show that the dense magnetite particles inside pellet are oxidized to porous hematite particles,and the Fe_(3)O_(4) transforms to Fe_(2)O_(3) with high lattice defect concentration during the pre-oxidation process.Then the porous hematite particles and newly formed Fe_(2)O_(3) significantly promote the reduction efficiency.Porous metallic iron particles are produced in the reduction process.Finally,both high reduction efficiency and the porous structure of metallic iron particles dramatically enhance the carburization efficiency of pellet.High preoxidation temperature favors to the carburization of magnetite pellet.However,the carburized index decreases due to the recrystallization of iron oxide when the temperature extends to 1000℃.The optimum pre-oxidation temperature for magnetite pellet carburization is 900℃.展开更多
Modified humic acid (MHA) binder based on lignite humic substances is a novel sort of promising organic binder for iron ore pellets.Humic acid (HA) is one of the main ingredients of MHA binder.Pure HA was firstly isol...Modified humic acid (MHA) binder based on lignite humic substances is a novel sort of promising organic binder for iron ore pellets.Humic acid (HA) is one of the main ingredients of MHA binder.Pure HA was firstly isolated from lignite and then adsorption of HA onto magnetite particle surface was investigated.The final results indicate that the adsorption of HA onto magnetite surface accords with Langmuir model well,and it is evidently influenced by the initial HA concentration and solution pH value.Adsorption depends on chemical interaction at pH values above the PZC (the pH where the Zeta potentials of minerals are zero) of magnetite,while electrostatic attraction and chemical interaction both contribute to the adsorption at pH values below the PZC.展开更多
Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites ...Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.展开更多
基金Project(U1960104)supported by the National Natural Science Foundation of ChinaProject(LYU Ya-nan)supported by the Jiangsu Colleges and Universities Qing Lan Project,China。
文摘Magnetite is a kind of iron ore that is difficult to carburize.In order to improve the carburizing performance of magnetite pellet,pre-oxidation treatment was carried out,and the oxidation,reduction and carburization behaviors of magnetite pellet were investigated in this study.The magnetite pellet was oxidized in the air and carburized in CO-CO_(2)-H_(2) gas mixtures,the oxidation,reduction and carburization behaviors were demonstrated by detecting phase change,microstructure,carburizing index via thermogravimetry,X-ray diffraction(XRD),infrared carbon-sulfur analyzer,and scanning electron microscope(SEM).The results show that the dense magnetite particles inside pellet are oxidized to porous hematite particles,and the Fe_(3)O_(4) transforms to Fe_(2)O_(3) with high lattice defect concentration during the pre-oxidation process.Then the porous hematite particles and newly formed Fe_(2)O_(3) significantly promote the reduction efficiency.Porous metallic iron particles are produced in the reduction process.Finally,both high reduction efficiency and the porous structure of metallic iron particles dramatically enhance the carburization efficiency of pellet.High preoxidation temperature favors to the carburization of magnetite pellet.However,the carburized index decreases due to the recrystallization of iron oxide when the temperature extends to 1000℃.The optimum pre-oxidation temperature for magnetite pellet carburization is 900℃.
基金Project(50804059) supported by the National Natural Science Foundation of ChinaProject(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘Modified humic acid (MHA) binder based on lignite humic substances is a novel sort of promising organic binder for iron ore pellets.Humic acid (HA) is one of the main ingredients of MHA binder.Pure HA was firstly isolated from lignite and then adsorption of HA onto magnetite particle surface was investigated.The final results indicate that the adsorption of HA onto magnetite surface accords with Langmuir model well,and it is evidently influenced by the initial HA concentration and solution pH value.Adsorption depends on chemical interaction at pH values above the PZC (the pH where the Zeta potentials of minerals are zero) of magnetite,while electrostatic attraction and chemical interaction both contribute to the adsorption at pH values below the PZC.
基金Project(RP021-2012C)supported by University of Malaya under the UMRG Fund,Malaysia
文摘Abstract: Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart's procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 ℃for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 20 from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360-390 m^2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.