Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high red...Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.展开更多
Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for...Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.展开更多
Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400℃ has the oxidation d...Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400℃ has the oxidation degree approaching to natural magnetite concentrate pellet fired at 1000℃. Besides, two kinds of pellets displayed quite different roasting characteristics. When preheated at the same temperature for the same period of time, natural magnetite concentrate pellet and artificial magnetite concentrate pellet need to be roasted at the temperature of 1100℃ and 1250℃, respectively, for 25 min to reach the compressive strength of 3000 N per pellet. When roasted at the same temperature of 1200℃, natural magnetite pellet and artificial magnetite pellet need to be roasted for 15 min and 30 min, respectively, to reach the compressive strength over 3000 N per pellet. It can be seen from the test that artificial magnetite pellet has a faster oxidation, resulting in the high porosity in the produced pellet, and it requires a roasting process at higher temperature for a longer time to reach the desired compressive strength for industrial production.展开更多
In this study,the effects of drying temperature,hot airflow speed and diameter of green pellet on drying rate of artificial magnetite pellet were deeply investigated to clarify the drying characteristics of artificial...In this study,the effects of drying temperature,hot airflow speed and diameter of green pellet on drying rate of artificial magnetite pellet were deeply investigated to clarify the drying characteristics of artificial magnetite green pellet.The results show that the drying process of artificial magnetite green pellet has three stages,accelerated drying stage,constant drying stage and decelerated drying stage.And drying temperature and hot airflow speed both have significant reciprocal effects on moisture ratio and drying rate of green pellet during the drying process.However,the diameter of green pellet has little effect on drying process of green pellet.Then the drying fitting models of Correction Henderson and Pabis,Lewis,Correction Page(III),Wang and Singh are used to describe the drying kinetics of artificial magnetite green pellet.The fitting results indicate that the drying process of artificial magnetite pellet can be described by Correction Page(III)model accurately.Finally,the contrast experiments demonstrate that the fitting model can well describe the actual drying process.展开更多
A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pelle...A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pellets was investigated.And morphology of the sticking interface forming during reduction was analyzed by SEM equipped with EDS.In order to evaluate the effects of the temperature and gas composition on sticking properties,reduction of iron ore pellets were conducted at 800-1000 ℃.The results show that the sticking strength of the pellets increases with temperature,however,decreases with hydrogen content in reducing gas.For an efficient shaft furnace operation in direct reduction(DR),relative prevention of sticking such as coating of pellets was also developed to solve sticking problem.The results show that CaO is a suitable material for the coating method.展开更多
A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binde...A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better.Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain1.06% more total iron than 2 % bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.展开更多
Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t...Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.展开更多
Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and ...Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion.展开更多
Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess elec...Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.展开更多
The influence of sulfur content in raw materials on oxidized pellets was studied. The results show that most sulfur exists in the form of elementary sulfur in pyrite cinder, and over 95% sulfur is removed in producing...The influence of sulfur content in raw materials on oxidized pellets was studied. The results show that most sulfur exists in the form of elementary sulfur in pyrite cinder, and over 95% sulfur is removed in producing pyrite cinder oxidized pellets. The compressive strength of fired pellets drops from 3 186 N to 2 405 N when the ratio of pyrite cinder increases from 40% to 70% under the conditions of preheating at 900℃ for 9 min and firing at 1 230 ℃ for 15 min. The porosity and microstructures of fired pellets prove that the higher ratio of pyrite cinder is given, and the more holes and cracks are achieved, leading to the better reducibility index (RI) and reduction swelling index (RSI), and the lower compressive strength of fired pellets and the worse reduction degradation index (RDI).展开更多
文摘Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.
基金Project(NCET-05-0630) supported by Program for New Century Excellent Talents in University of China
文摘Rotary kiln process for iron ore oxide pellet production is hard to detect and control.Construction of one-dimensional model of temperature field in rotary kiln was described.And the results lay a solid foundation for online control.Establishment of kiln process control expert system was presented,with maximum temperature of pellet and gas temperature at the feed end as control cores,and interval estimate as control strategy.Software was developed and put into application in a pellet plant.The results show that control guidance of this system is accurate and effective.After production application for nearly one year,the compressive strength and first grade rate of pellet are increased by 86 N and 2.54%,respectively,while FeO content is 0.05% lowered.This system can reveal detailed information of real time kiln process,and provide a powerful tool for online control of pellet production.
基金Project(51474161)supported by the National Natural Science Foundation of China
文摘Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400℃ has the oxidation degree approaching to natural magnetite concentrate pellet fired at 1000℃. Besides, two kinds of pellets displayed quite different roasting characteristics. When preheated at the same temperature for the same period of time, natural magnetite concentrate pellet and artificial magnetite concentrate pellet need to be roasted at the temperature of 1100℃ and 1250℃, respectively, for 25 min to reach the compressive strength of 3000 N per pellet. When roasted at the same temperature of 1200℃, natural magnetite pellet and artificial magnetite pellet need to be roasted for 15 min and 30 min, respectively, to reach the compressive strength over 3000 N per pellet. It can be seen from the test that artificial magnetite pellet has a faster oxidation, resulting in the high porosity in the produced pellet, and it requires a roasting process at higher temperature for a longer time to reach the desired compressive strength for industrial production.
基金Projects(51974204,51474161)supported by the National Natural Science Foundation of China。
文摘In this study,the effects of drying temperature,hot airflow speed and diameter of green pellet on drying rate of artificial magnetite pellet were deeply investigated to clarify the drying characteristics of artificial magnetite green pellet.The results show that the drying process of artificial magnetite green pellet has three stages,accelerated drying stage,constant drying stage and decelerated drying stage.And drying temperature and hot airflow speed both have significant reciprocal effects on moisture ratio and drying rate of green pellet during the drying process.However,the diameter of green pellet has little effect on drying process of green pellet.Then the drying fitting models of Correction Henderson and Pabis,Lewis,Correction Page(III),Wang and Singh are used to describe the drying kinetics of artificial magnetite green pellet.The fitting results indicate that the drying process of artificial magnetite pellet can be described by Correction Page(III)model accurately.Finally,the contrast experiments demonstrate that the fitting model can well describe the actual drying process.
基金Project(50725416)supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘A series of reduction experiments of iron ore pellets with hydrogen,carbon monoxide and their mixture were carried out in a laboratory scale shaft furnace.The sticking behavior accompanying reduction of iron ore pellets was investigated.And morphology of the sticking interface forming during reduction was analyzed by SEM equipped with EDS.In order to evaluate the effects of the temperature and gas composition on sticking properties,reduction of iron ore pellets were conducted at 800-1000 ℃.The results show that the sticking strength of the pellets increases with temperature,however,decreases with hydrogen content in reducing gas.For an efficient shaft furnace operation in direct reduction(DR),relative prevention of sticking such as coating of pellets was also developed to solve sticking problem.The results show that CaO is a suitable material for the coating method.
基金Project(50804059)supported by the National Natural Science Foundation of ChinaProject(CX2012B121)supported by the Innovation Research Program for Graduate Student of Hunan Province,China
文摘A modified humic acid(MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better.Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain1.06% more total iron than 2 % bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.
基金Project(2008BAB32B06) supported by the Key Projects in the National Science and Technology Pillar Program during the 11th Five-year Plan PeriodProject(2009ybfz20) supported by the Program for Excellent Doctor’s Degree Paper in Central South University,ChinaProject(1343/74333001114) supported by the Postgraduate’s Paper Innovation Fund of Hunan Province,China
文摘Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.
基金Project(50725416) supported by National Natural Science Funds for Distinguished Young Scholars of China
文摘Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion.
基金Project(MLP-52)supported by the Council of Scientific and Industrial Research(CSIR),India。
文摘Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.
基金Project(2007k02) supported by the Technology Fund of the Land and Resources Department of Hunan Province, China
文摘The influence of sulfur content in raw materials on oxidized pellets was studied. The results show that most sulfur exists in the form of elementary sulfur in pyrite cinder, and over 95% sulfur is removed in producing pyrite cinder oxidized pellets. The compressive strength of fired pellets drops from 3 186 N to 2 405 N when the ratio of pyrite cinder increases from 40% to 70% under the conditions of preheating at 900℃ for 9 min and firing at 1 230 ℃ for 15 min. The porosity and microstructures of fired pellets prove that the higher ratio of pyrite cinder is given, and the more holes and cracks are achieved, leading to the better reducibility index (RI) and reduction swelling index (RSI), and the lower compressive strength of fired pellets and the worse reduction degradation index (RDI).