为了研究复杂温压场下钻柱系统动力学特性,综合考虑了钻头-岩石相互作用,温度和压力对钻井液性能影响、温度对钻柱几何尺寸与特性影响以及钻柱系统所受轴向与扭转方向耦合振动,基于状态依赖时滞方法建立了4自由度直井钻柱系统动力学模型...为了研究复杂温压场下钻柱系统动力学特性,综合考虑了钻头-岩石相互作用,温度和压力对钻井液性能影响、温度对钻柱几何尺寸与特性影响以及钻柱系统所受轴向与扭转方向耦合振动,基于状态依赖时滞方法建立了4自由度直井钻柱系统动力学模型,分析了钻压(weight on bit,WOB)、驱动转速、钻井液密度以及地温梯度对系统动力学特性的影响。在此基础上,探究了WOB和驱动转速,钻井液密度和地温梯度对钻柱系统最小速度的影响规律。研究结果表明:增大钻压与钻井液密度会加剧钻柱系统振动程度,造成钻头黏滑振动;增加转速可以抑制黏滑振动;随着地温梯度的增加,会使钻头跳钻问题与黏滑振动更为严重;合理选择钻压与驱动转速能够避免黏滑振动,提高钻进效率;钻井液密度与地温梯度对钻柱系统的影响使得其最小速度呈现出一种非线性、无明显规律的特征,需要根据现场工况,结合模型进行参数优选。展开更多
文摘为了研究复杂温压场下钻柱系统动力学特性,综合考虑了钻头-岩石相互作用,温度和压力对钻井液性能影响、温度对钻柱几何尺寸与特性影响以及钻柱系统所受轴向与扭转方向耦合振动,基于状态依赖时滞方法建立了4自由度直井钻柱系统动力学模型,分析了钻压(weight on bit,WOB)、驱动转速、钻井液密度以及地温梯度对系统动力学特性的影响。在此基础上,探究了WOB和驱动转速,钻井液密度和地温梯度对钻柱系统最小速度的影响规律。研究结果表明:增大钻压与钻井液密度会加剧钻柱系统振动程度,造成钻头黏滑振动;增加转速可以抑制黏滑振动;随着地温梯度的增加,会使钻头跳钻问题与黏滑振动更为严重;合理选择钻压与驱动转速能够避免黏滑振动,提高钻进效率;钻井液密度与地温梯度对钻柱系统的影响使得其最小速度呈现出一种非线性、无明显规律的特征,需要根据现场工况,结合模型进行参数优选。