期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
新型铁钡双金属氢氧化物对水中铀的去除 被引量:1
1
作者 张益硕 吕欣怡 +4 位作者 龚逸 马梦月 辛燕 石瀚晋 李小燕 《中国有色冶金》 北大核心 2025年第2期114-124,共11页
采用吸附技术处理含铀废水具有操作简单、绿色清洁、去除性能优异等优点,开发高效且制备简单的新型吸附材料是该领域的重要研究课题。双金属氢氧化物具有合成简单、吸附性能优异等特点,成为高效处理含金属离子废水的潜在吸附材料,但文... 采用吸附技术处理含铀废水具有操作简单、绿色清洁、去除性能优异等优点,开发高效且制备简单的新型吸附材料是该领域的重要研究课题。双金属氢氧化物具有合成简单、吸附性能优异等特点,成为高效处理含金属离子废水的潜在吸附材料,但文献报道的钴镁双金属氢氧化物对铀的最大吸附量仅为9.84 mg·g^(-1)且成本昂贵。本研究采用一步合成法简易制备出新型铁钡双金属氢氧化物吸附材料,对其进行表征与分析,并进行单因素条件试验考察优化工艺参数,得到以下主要结论:Fe-Ba双金属氢氧化物为不规则的类颗粒结构并存在一定的孔隙,主要由Fe(OH)_(3)、Ba(OH)_(2)和BaCO_(3)所组成,含有丰富的羟基和碳酸根,羟基和碳酸根对铀的络合为主要的吸附机理;该吸附材料去除废水中U(VI)的较优条件为温度25℃、pH=5.5、固液比0.2 g·L^(-1)、时间50 min,该条件下对含U(VI)10 mg·L^(-1)废水中铀去除率为96.52%;该吸附材料受干扰离子和腐殖酸的影响较小,处理含U(VI)10 mg·L^(-1)废水对铀具有一定的选择性;吸附模型分析表明,该吸附材料对铀的去除以单层和化学吸附为主,最大吸附量可达163.93 mg·g^(-1)。该吸附材料适合处理含铀5~10 mg·L^(-1)废水,且具有制备简单、无二次污染及成本低的优势,具有工业应用价值。 展开更多
关键词 含铀废水 吸附材料 双金属氢氧化物 双金属氢氧化物 双金属氢氧化物 吸附机理 干扰离子
在线阅读 下载PDF
钴铁层状双金属氢氧化物的构筑及电催化分解水性能研究
2
作者 黄雅荣 于润泽 关丽丽 《功能材料》 CAS CSCD 北大核心 2024年第11期11125-11131,共7页
由于与日俱增的能源污染以及不可再生化石燃料的大量消耗,探寻新的绿色清洁能源载体迫在眉睫。二维结构层状双金属氢氧化物在电催化分解水中表现出优异的电化学活性,但是导电性差、比表面小阻碍了性能的进一步提升。采用简便的水热法成... 由于与日俱增的能源污染以及不可再生化石燃料的大量消耗,探寻新的绿色清洁能源载体迫在眉睫。二维结构层状双金属氢氧化物在电催化分解水中表现出优异的电化学活性,但是导电性差、比表面小阻碍了性能的进一步提升。采用简便的水热法成功构筑了独特形貌的钴铁双金属层状氢氧化物(CoFe-LDHs),考察了催化剂电催化分解水性能。在1 mol/L KOH中,CoFe-LDHs-1∶1同时作为阴极和阳极在达到电流密度为10 mA/cm^(2)时仅需要施加1.62 V电压,在电催化分解水稳定性测试中也表现出卓越的催化稳定性,50 h的稳定性测试中没有出现明显的性能衰减。 展开更多
关键词 钴铁双金属层状氢氧化物 活性位点 电催化分解水 稳定性
在线阅读 下载PDF
共沉淀法制备钴锰层状双金属氢氧化物及其电化学性能 被引量:2
3
作者 张宁 刘志伟 刘有智 《现代化工》 CAS CSCD 北大核心 2019年第2期68-73,共6页
通过共沉淀法制备钴锰层状双金属氢氧化物(CoMn-LDH)。在制备过程中,考察了钴锰摩尔比、碱浓度、晶化时间对材料形貌与电化学性能的影响。结果表明,当钴锰摩尔比为2∶1、碱浓度为2 mol/L、晶化时间为21 h时,在1 A/g的电流密度下,CoMn-LD... 通过共沉淀法制备钴锰层状双金属氢氧化物(CoMn-LDH)。在制备过程中,考察了钴锰摩尔比、碱浓度、晶化时间对材料形貌与电化学性能的影响。结果表明,当钴锰摩尔比为2∶1、碱浓度为2 mol/L、晶化时间为21 h时,在1 A/g的电流密度下,CoMn-LDH的比容量为952 F/g;经过1 000次充放电,比容量保持在92. 7%;电流密度从0. 5 A/g增加至10 A/g,比容量保持在79. 8%。 展开更多
关键词 层状双金属氢氧化物 共沉淀法 电化学性能
在线阅读 下载PDF
钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能 被引量:1
4
作者 穆伟娜 王力霞 +3 位作者 王琼 蔡艳荣 常春 包德才 《材料导报》 EI CAS CSCD 北大核心 2021年第24期24026-24031,共6页
采用一步水热法,通过在高传导泡沫镍(Nickel foam,NF)表面原位生长制备的钴铁双金属氢氧化物纳米片,被证明是一种在高电流下具有良好稳定性的高效双功能全解水电催化剂。在1 mol/L KOH电解液中,当电流密度为100 mA/cm^(2)、200 mA/cm^(2... 采用一步水热法,通过在高传导泡沫镍(Nickel foam,NF)表面原位生长制备的钴铁双金属氢氧化物纳米片,被证明是一种在高电流下具有良好稳定性的高效双功能全解水电催化剂。在1 mol/L KOH电解液中,当电流密度为100 mA/cm^(2)、200 mA/cm^(2)、250 mA/cm^(2)时,其析氧过电位分别为216 mV、269 mV和284 mV,塔菲尔斜率仅为49.79 mV/dec;当电流密度为10 mA/cm^(2)、50 mA/cm^(2)、100 mA/cm^(2)和200 mA/cm^(2)时,其析氢过电位分别为137 mV、221 mV、256 mV和297 mV,塔菲尔斜率为113.15 mV/dec。全水解只需要一个超低的电压(1.532 V),就可以获得200 mA/cm^(2)的电流。在200 mA/cm^(2)运行20 h后,电流密度仅下降8.86%;维持200 mA/cm^(2)运行20 h,电压仅上浮2.12%。可见,所制备的钴铁双金属氢氧化物纳米片具有高效、稳定的电催化性能。 展开更多
关键词 双金属氢氧化物 纳米结构 高电流 催化剂 再生能源
在线阅读 下载PDF
多壁碳纳米管/钴镍层状双金属氢氧化物纳米复合材料的制备及电化学性能研究 被引量:4
5
作者 叶发萍 解玉龙 +1 位作者 郭倩妮 赵素琴 《现代化工》 CAS CSCD 北大核心 2022年第4期187-191,共5页
以硫酸钴(CoSO_(4)·7H_(2)O)为钴源、硫酸镍(NiSO_(4)·7H_(2)O)为镍源,通过水热法将多壁碳纳米管(MWCNTs)嵌入到钴镍层状双金属氢氧化物(CoNi-LDHs)中合成CoNi-LDHs/MWCNTs复合材料。通过FT-IR、FE-SEM、XRD等分析方法对复合... 以硫酸钴(CoSO_(4)·7H_(2)O)为钴源、硫酸镍(NiSO_(4)·7H_(2)O)为镍源,通过水热法将多壁碳纳米管(MWCNTs)嵌入到钴镍层状双金属氢氧化物(CoNi-LDHs)中合成CoNi-LDHs/MWCNTs复合材料。通过FT-IR、FE-SEM、XRD等分析方法对复合材料的微观组织结构和表面形貌进行表征,并通过循环伏安、恒流充放电以及交流阻抗谱等测试方法对该材料的电化学性能进行研究。结果表明,当反应体系中引入MWCNTs后,CoNi-LDHs颗粒均匀地嵌入碳纳米管网络中,与碳纳米管紧密结合交错在一起,增大了材料的表面积,为氧化还原反应提供了丰富的活性位点;在电流密度为0.5 A/g下,复合材料比电容高达1965.55 F/g,表明该复合材料具有优异的电化学性能。 展开更多
关键词 层状双金属氢氧化物 多壁碳纳米管 水热法 电化学性能
在线阅读 下载PDF
花瓣状镍钴层状双金属氢氧化物微球的制备及其超级电容性能 被引量:1
6
作者 严涛 李在均 《江南大学学报(自然科学版)》 CAS 2013年第6期719-724,共6页
在乙醇-水(V(乙醇)∶V(水)=9∶1)的反应介质中,以SiO2@AlOOH为硬模板,加入镍钴盐前驱体和碱源,水热法制备了花瓣状镍钴层状双金属氢氧化物微球(NiCo-LDHM)。采用扫描电子显电镜、透射电镜和电化学工作站等对此复合材料进行了表征。研究... 在乙醇-水(V(乙醇)∶V(水)=9∶1)的反应介质中,以SiO2@AlOOH为硬模板,加入镍钴盐前驱体和碱源,水热法制备了花瓣状镍钴层状双金属氢氧化物微球(NiCo-LDHM)。采用扫描电子显电镜、透射电镜和电化学工作站等对此复合材料进行了表征。研究发现,该微球平均粒径约2.5μm,呈多孔结构,由厚度10 nm左右纳米片自组装形成。在1 A/g的电流密度下,该产物电极的比电容量达到1 108.8 F/g,明显优于普通镍钴层状双金属氢氧化物电极(710.5 F/g)的比电容量。当电流密度增加到7 A/g,比电容量为700.8 F/g,恒电流充-放电1 500次后比电容量仍高于94.5%,由此说明了复合材料具有优异的超级电容性能。 展开更多
关键词 乙醇 层状双金属氢氧化物 超级电容器 电化学性能
在线阅读 下载PDF
泡沫镍表面原位生长纳米花锌钴氢氧化物电极材料及电化学性能研究 被引量:3
7
作者 张豪 王立艳 +3 位作者 李英奇 肖姗姗 毕菲 赵丽 《无机盐工业》 CAS CSCD 北大核心 2021年第5期61-65,共5页
层状双金属氢氧化物(LDH)由于其丰富的活性位点和双金属的协同效应等优点已得到广泛关注。然而,制备具有高倍率性能、低电阻的新颖LDH电极材料仍是一个挑战。通过共沉淀法,在泡沫镍(NF)集流体上原位生长三维纳米花层状锌钴氢氧化物(ZnCo... 层状双金属氢氧化物(LDH)由于其丰富的活性位点和双金属的协同效应等优点已得到广泛关注。然而,制备具有高倍率性能、低电阻的新颖LDH电极材料仍是一个挑战。通过共沉淀法,在泡沫镍(NF)集流体上原位生长三维纳米花层状锌钴氢氧化物(ZnCo LDHs)电极材料。ZnCo LDHs@NF有较大的可及表面积以及较低的固有电阻(0.56Ω)。同时该电极材料有较高的比容量(1 A/g的电流密度下为1583 F/g),并且在20 A/g的电流密度下仍能保持81%的比容量(1280 F/g)。这些优异的电化学性能表明制备的ZnCo LDHs@NF电极材料在储能设备中具有较大的应用前景。 展开更多
关键词 层状双金属氢氧化物 层状氢氧化物 超级电容器 电化学性能
在线阅读 下载PDF
离子液体改性水滑石的制备及对孔雀石绿的吸附
8
作者 吴春来 彭传云 +2 位作者 苗亚磊 曹嘉翔 高欣雨 《印染》 CAS 北大核心 2024年第9期69-75,共7页
通过水热反应,一步合成了离子液体改性钴铁层状双金属氢氧化物(IL@Co/Fe-LDH)。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TGA)和全自动比表面及孔隙率分析仪(BET)对其微观结构和官能团特... 通过水热反应,一步合成了离子液体改性钴铁层状双金属氢氧化物(IL@Co/Fe-LDH)。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TGA)和全自动比表面及孔隙率分析仪(BET)对其微观结构和官能团特性进行表征。离子液体的改性增加了LDH表面活性位点,同时,由于离子液体的作用,部分LDH层板被破坏,呈孔状结构,增大了比表面积。孔雀石绿吸附试验显示,IL@Co/Fe-LDH的吸附量随温度升高而降低。吸附过程符合准二级动力学模型和Langmuir吸附等温模型,最大吸附量为282.48mg/g,高于常见吸附剂。热力学分析结果表明,IL@Co/Fe-LDH对孔雀石绿的吸附为自发进行的放热过程。5次吸附-解吸附循环后,材料对孔雀石绿的去除率仍高达87%,具有潜在的应用前景。 展开更多
关键词 层状双金属氢氧化物 离子液体 改性 孔雀石绿 吸附
在线阅读 下载PDF
CoFe-LDH/泡沫铜的制备及催化介质阻挡放电等离子体降解水中敌草隆性能与机制
9
作者 沈天瑶 杨怿 +3 位作者 于海鹤 徐鹏 张广山 王鹏 《应用化学》 CAS CSCD 北大核心 2024年第2期243-255,共13页
采用一步水热法,以钴和铁元素为活性组分制备了片层状钴铁层状双金属氢氧化物(CoFe-LDH),通过调节元素摩尔比和水热温度、时间以及尿素投加量的制备条件得到了可以高效催化介质阻挡放电等离子体(DBDP)的粉末催化剂。研究结果表明,当n(尿... 采用一步水热法,以钴和铁元素为活性组分制备了片层状钴铁层状双金属氢氧化物(CoFe-LDH),通过调节元素摩尔比和水热温度、时间以及尿素投加量的制备条件得到了可以高效催化介质阻挡放电等离子体(DBDP)的粉末催化剂。研究结果表明,当n(尿素)∶n(Co)∶n(Fe)=10∶3∶1,水热温度为120℃,水热时间18 h时,得到的CoFe-LDH催化性能最优,其催化DBDP降解敌草隆(DUR)的降解率和降解速率常数分别达到了96.54%和0.1354 min^(-1),制备条件中水热时间对催化性能影响最大。在此基础上,将配比优化的CoFe-LDH负载在泡沫铜(CuF)表面,得到了片状可回收的三元CoFe-LDH/CuF(CFHC)催化剂。系统地表征了CFHC的结构组成,研究了微观结构和元素组成与催化性能之间的内在联系。由于还原态铜元素的引入,增加了催化剂表面的氧空位含量,显著地提升了复合材料的催化性能。CFHC的加入成功将DBDP对敌草隆的去除速率提升至0.2175 min^(-1),是DBDP空白体系的3.18倍。CuF的引入增加了催化剂的导电能力,在降解过程中钴、铁、铜和氧空位之间的电子转移是高催化活性的根本原因,CFHC重新调整了DBDP体系内的优势活性物种,·O_(2)^(-)和^(1)O_(2)取代·OH成为了降解敌草隆的主要活性物质。 展开更多
关键词 层状双金属氢氧化物 介质阻挡放电等离子体 敌草隆 泡沫铜
在线阅读 下载PDF
Co^2+含量对CoAl-LDHs焙烧产物结构、组成及其生长碳纳米管的影响 被引量:2
10
作者 Halidou I.Hima 项顼 +2 位作者 张璐 李峰 David G.Evans 《无机化学学报》 SCIE CAS CSCD 北大核心 2008年第6期886-891,共6页
采用成核晶化隔离法将Co2+引入层状双金属氢氧化物(LDHs),得到了含不同Co2+/Al3+物质的量的比为1∶1,2∶1,3∶1的二元钴铝碳酸根型LDHs(CoAl-LDHs)。通过X射线衍射(XRD)、透射电镜(TEM)、扫描电镜-能量散射谱(SEM-EDS)、拉曼光谱(Raman... 采用成核晶化隔离法将Co2+引入层状双金属氢氧化物(LDHs),得到了含不同Co2+/Al3+物质的量的比为1∶1,2∶1,3∶1的二元钴铝碳酸根型LDHs(CoAl-LDHs)。通过X射线衍射(XRD)、透射电镜(TEM)、扫描电镜-能量散射谱(SEM-EDS)、拉曼光谱(Raman)、程序升温还原(TPR)及X射线光电子能谱(XPS)等方法对CoAl-LDHs焙烧产物的结构、组成及其化学气相沉积(CCVD)催化生长多壁碳纳米管(CNTs)进行了研究。结果表明:CoAl-LDHs前体中钴的含量可以明显改变焙烧产物的组成分布和还原性能,并最终影响CNTs的生长,其中以nCo2+/nAl3+比为2/1的LDHs作为催化剂前体可以得到管径均匀和石墨化程度高的CNTs,这与还原得到的纳米活性Co颗粒均匀分散有关。 展开更多
关键词 层状双金属氢氧化物 碳纳米管 催化
在线阅读 下载PDF
超级电容器用NiCo-LDH电极材料研究进展 被引量:5
11
作者 曹晓晨 原梅妮 丁聪明 《电池》 CAS 北大核心 2023年第3期342-346,共5页
镍钴层状双金属氢氧化物(NiCo-LDH)具有理论比电容大、成本低等优势,作为超级电容器电极材料得到广泛研究,但导电性能和电化学性能较差,限制了实际应用。简要介绍NiCo-LDH电极材料的储能原理、电化学性能影响因素(如比表面积、孔径和导... 镍钴层状双金属氢氧化物(NiCo-LDH)具有理论比电容大、成本低等优势,作为超级电容器电极材料得到广泛研究,但导电性能和电化学性能较差,限制了实际应用。简要介绍NiCo-LDH电极材料的储能原理、电化学性能影响因素(如比表面积、孔径和导电性等)和制备方法,其中包括水热法(溶剂热法)、微波法、电化学沉积法、化学共沉淀法和牺牲模板法等。重点介绍NiCo-LDH电极材料的改性研究(如改变形貌、制备复合材料等),并对研究方向进行展望。 展开更多
关键词 超级电容器 层状双金属氢氧化物(NiCo-LDH) 电化学性能 电极材料 改性研究
在线阅读 下载PDF
焙烧温度对CoAl-LDH基催化剂结构和费托合成性能的影响
12
作者 张忠祥 罗明生 +5 位作者 刘清龙 王亚涛 李洪娟 李建华 杨智 王爱梅 《现代化工》 CAS CSCD 北大核心 2023年第4期198-204,共7页
采用尿素水解法制备了层状双金属氢氧化物(CoAl-LDHs),经焙烧处理后得到LDH基催化剂,利用XRD、BET、SEM等分析方法对其进行表征,并在固定床上考察了焙烧温度对催化剂的层状结构及费托合成反应性能的影响。结果表明,热解LDHs会生成层状... 采用尿素水解法制备了层状双金属氢氧化物(CoAl-LDHs),经焙烧处理后得到LDH基催化剂,利用XRD、BET、SEM等分析方法对其进行表征,并在固定床上考察了焙烧温度对催化剂的层状结构及费托合成反应性能的影响。结果表明,热解LDHs会生成层状双分子氧化物(LDO),热解温度对催化剂的晶型结构、颗粒分散度和还原性能有显著影响;催化剂中钴的负载量可达50.0%以上,钴氧化物颗粒均匀分散在纳米片上,同时具有较大的比表面积。其中600℃焙烧LDHs形成催化剂的催化活性最佳,在反应温度220℃、V(H_(2))∶V(CO)=2∶1、反应压力2.5 MPa和空速为3.8 h^(-1)的条件下,CO转化率为22%,C_(5+)选择性可达91.4%。 展开更多
关键词 费托合成 层状双金属氢氧化物 纳米片 层状双金属氧化物 催化剂
在线阅读 下载PDF
高性能CoAl-LDH六边形纳米片超级电容器电极材料的制备 被引量:2
13
作者 张改妮 任莉君 《功能材料》 EI CAS CSCD 北大核心 2018年第3期3171-3174,3181,共5页
采用简单的共沉淀法,制备了分散性良好且尺寸均一的钴铝层状双金属氢氧化物(CoAl-LDH)六边形纳米片电极材料,其尺寸约为2μm。三电极体系电化学测试结果表明,在电流密度为1A/g时,CoAl-LDH纳米片电极材料的质量比电容为723F/g,电流密度... 采用简单的共沉淀法,制备了分散性良好且尺寸均一的钴铝层状双金属氢氧化物(CoAl-LDH)六边形纳米片电极材料,其尺寸约为2μm。三电极体系电化学测试结果表明,在电流密度为1A/g时,CoAl-LDH纳米片电极材料的质量比电容为723F/g,电流密度增加至20A/g时,电容保持率高达72%。CoAl-LDH纳米片电极材料有望成为组装高性能超级电容器的可选电极材料。 展开更多
关键词 层状双金属氢氧化物 六边形纳米片 电极材料 比电容 高性能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部