期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dual-site Doping of Tungsten and Fluorine Enhances the Interface Stability of Na3SbS4 in All-solid-state Sodium Metal Batteries
1
作者 GUO Yihao HU Xiaoyu YUAN Yongfeng 《材料科学与工程学报》 2025年第5期743-756,共14页
Practical application of Na3SbS4(NSS)solid-state electrolyte in sodium metal batteries has been significantly hindered by poor interfacial stability and insufficient ionic conductivity.In this study,a series of dual-s... Practical application of Na3SbS4(NSS)solid-state electrolyte in sodium metal batteries has been significantly hindered by poor interfacial stability and insufficient ionic conductivity.In this study,a series of dual-site doped Na_(3-2x)Sb_(1-x)W_(x)S_(4-x)F_(x)(x=0,0.12,0.24,0.36)electrolytes through high-energy ball milling followed by high-temperature sintering is prepared,where tungsten(W)substitutes for antimony(Sb)and fluorine(F)replaces sulfur(S)in the NSS lattice.The co-doping of W and F not only broadens the interplanar spacing of NSS but also promotes the stable formation of the cubic phase of NSS,thereby effectively enhancing the transport ability of sodium ions within NSS.Among them,Na_(2.52)Sb|_(0.76)W_(0.24)S_(3.76)F_(0.24) exhibits the highest ionic conductivity of 4.45 mS·cm^(-1).Furthermore,F doping facilitates the in-situ formation of NaF between the electrolyte and metallic sodium,significantly improving interfacial stability.Electrochemical evaluation shows that the Na/Na_(2.52)Sb|_(0.76)W_(0.24)S_(3.76)F_(0.24)/Na symmetric cell achieves a high critical current density of 1.65 mA·cm^(-2) and maintains stable sodium plating/stripping cycling for 500 h at 0.1 mA·cm^(-2).Additionally,the TiS2/Na_(2.52)Sb|_(0.76)W_(0.24)S_(3.76)F_(0.24)/Na full cell exhibits outstanding cycling stability and rate capability. 展开更多
关键词 Tungsten and fluorine co-doping Ionic conductivity Interface stability Allsolid-state sodium metal batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部