期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
水电站厂房组合框架结构静动态服役性态分析研究进展
1
作者 胡少伟 叶宇霄 +2 位作者 喻江 王宇航 孙岳阳 《水利水运工程学报》 CSCD 北大核心 2019年第6期8-21,共14页
为准确、高效地评估高发频率、高烈变地震区水电站厂房钢-混框架结构静动力服役性态特征,结合模型试验、数值分析、方法评估等研究成果,重点进行了钢管组合柱复合服役性能试验研究与机理分析、钢-混凝土组合楼板服役性能试验与理论分析... 为准确、高效地评估高发频率、高烈变地震区水电站厂房钢-混框架结构静动力服役性态特征,结合模型试验、数值分析、方法评估等研究成果,重点进行了钢管组合柱复合服役性能试验研究与机理分析、钢-混凝土组合楼板服役性能试验与理论分析、钢-混凝土组合节点服役性能与安全承载分析试验研究与机理分析、钢-混凝土组合框架结构静动态服役性能研究、钢-混凝土组合框架结构抗冲击服役性能研究、大型组合框架结构服役性能优化分析。对水电站厂房框架结构服役性态研究方法,以及水电站厂房钢筋混凝土结构、水电站厂房钢-混凝土框架结构服役性态方面的研究进展进行了归纳,总结出钢-混凝土组合结构在水电站厂房框架结构中的发展与工程运用中存在的问题及需要推进的研究工作,旨在进行水电站厂房结构服役性能提升与安全保障技术研究。 展开更多
关键词 水电站厂房 钢-混框架结构 静动力服役性态 综述
在线阅读 下载PDF
Performance-based seismic financial risk assessment of reinforced concrete frame structures 被引量:5
2
作者 吴巧云 朱宏平 樊剑 《Journal of Central South University》 SCIE EI CAS 2012年第5期1425-1436,共12页
Engineering facilities subjected to natural hazards(such as winds and earthquakes) will result in risk when any designed system(i.e.capacity) will not be able to meet the performance required(i.e.demand).Risk might be... Engineering facilities subjected to natural hazards(such as winds and earthquakes) will result in risk when any designed system(i.e.capacity) will not be able to meet the performance required(i.e.demand).Risk might be expressed either as a likelihood of damage or potential financial loss.Engineers tend to make use of the former(i.e.damage).Nevertheless,other non-technical stakeholders cannot get useful information from damage.However,if financial risk is expressed on the basis of probable monetary loss,it will be easily understood by all.Therefore,it is necessary to develop methodologies which communicate the system capacity and demand to financial risk,Incremental dynamic analysis(IDA) was applied in a performance-based earthquake engineering context to do hazard analysis,structural analysis,damage analysis and loss analysis of a reinforced concrete(RC) frame structure.And the financial implications of risk were expressed by expected annual loss(EAL).The quantitative risk analysis proposed is applicable to any engineering facilities and any natural hazards.It is shown that the results from the IDA can be used to assess the overall financial risk exposure to earthquake hazard for a given constructed facility.The computational IDA-EAL method will enable engineers to take into account the long-term financial implications in addition to the construction cost.Consequently,it will help stakeholders make decisions. 展开更多
关键词 performance-based earthquake engineering (PBEE) incremental dynamic analysis (IDA) seismic risk analysis expected annual loss (EAL) seismic financial risk
在线阅读 下载PDF
Performance-based passive control analysis of adjacent structures:Optimization of Maxwell dampers 被引量:2
3
作者 吴巧云 代健州 朱宏平 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2180-2197,共18页
The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements... The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes. 展开更多
关键词 adjacent structures passive control seismic fragility analysis optimal parameters optimal arrangement exceeding probability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部