期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于图像增强与深度学习的钢轨表面缺陷检测 被引量:33
1
作者 罗晖 徐广隆 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第3期623-629,共7页
相比传统的物理检测算法,基于机器视觉的检测算法具有检测速度快、操作便捷等诸多优点,但因受光照不均、相机失焦抖动、雨雪天气等外界因素的影响,导致检测精度降低。针对这一问题,提出一种基于图像增强与深度学习的钢轨表面缺陷视觉检... 相比传统的物理检测算法,基于机器视觉的检测算法具有检测速度快、操作便捷等诸多优点,但因受光照不均、相机失焦抖动、雨雪天气等外界因素的影响,导致检测精度降低。针对这一问题,提出一种基于图像增强与深度学习的钢轨表面缺陷视觉检测算法。首先,对图像进行Gabor滤波去噪,以减少噪声对缺陷检测的影响;然后,利用HSV空间变换方法增强缺陷图像的关键特征信息;最后,通过改进Faster R-CNN卷积神经网络,实现了多尺度钢轨表面缺陷的检测与识别。通过对所提出的检测算法进行对比实验,实验结果表明:裂纹、剥落、磨损三类缺陷的识别精度分别为91.87%,92.75%和91.52%,检测速度为每张图像0.265 s,优于已有的钢轨表面缺陷检测算法,能够很好地应用于实际项目中。 展开更多
关键词 钢轨表面缺陷检测 机器视觉 目标检测 图像增强 卷积神经网络
在线阅读 下载PDF
基于改进YOLOv5的钢轨表面缺陷检测 被引量:15
2
作者 杜少聪 张红钢 王小敏 《北京交通大学学报》 CAS CSCD 北大核心 2023年第2期129-136,共8页
针对钢轨表面缺陷检测效率较低及抗干扰能力较差的问题,提出一种基于改进YOLOv5的钢轨表面缺陷检测算法.首先,采用图像增强操作对采集到的钢轨表面图像进行预处理,减轻高光、异物等噪声对检测效果的影响.其次,将多头自注意力层嵌入YOLOv... 针对钢轨表面缺陷检测效率较低及抗干扰能力较差的问题,提出一种基于改进YOLOv5的钢轨表面缺陷检测算法.首先,采用图像增强操作对采集到的钢轨表面图像进行预处理,减轻高光、异物等噪声对检测效果的影响.其次,将多头自注意力层嵌入YOLOv5骨干网络末端,并为缺陷特征引入全局依赖关系,提升模型对密集缺陷的检测效果.最后,构建跨层加权级联结构,将浅层信息融入到深层网络中,使网络对缺陷边界的回归更为精准.实验结果表明:本文的钢轨表面缺陷检测算法对裂纹、剥落、磨损3类表面缺陷检测的平均精度均值达到98.2%,每秒帧数(Frames Per Second,FPS)达到77帧/s,能够在不同的环境条件中实现对缺陷的精准检测,比其他某些同类算法拥有更高的鲁棒性、准确性和实时性. 展开更多
关键词 钢轨表面缺陷检测 YOLOv5 图像处理 多头自注意力 跨层加权级联
在线阅读 下载PDF
基于机器视觉的钢轨表面面型缺陷分类实验设计 被引量:5
3
作者 李珂嘉 张璐薇 +3 位作者 马跃洋 尹昱东 杨帆 张璐 《实验室研究与探索》 CAS 北大核心 2024年第3期122-127,134,共7页
随着城市轨道交通的飞速发展,实现钢轨表面缺陷实时检测对铁路行业稳步发展意义重大。如何实时检测钢轨表面缺陷是保障铁路运行安全亟须解决的一个关键问题。鉴于此,设计了一套基于机器视觉的钢轨表面缺陷检测实验仿真方法。搭建图像采... 随着城市轨道交通的飞速发展,实现钢轨表面缺陷实时检测对铁路行业稳步发展意义重大。如何实时检测钢轨表面缺陷是保障铁路运行安全亟须解决的一个关键问题。鉴于此,设计了一套基于机器视觉的钢轨表面缺陷检测实验仿真方法。搭建图像采集、图像预处理和缺陷分类等模块;提出自拟合亮度调整算法完成像素值统计,得到清晰的缺陷特征图像;用750组数据训练网络权值,实现缺陷分类预测;经过数据分析和误差评估,识别准确率在90%以上,相关系数高达0.96,单幅图像平均耗时1.267 s,测试表明,所提方法能准确、高效地实现钢轨表面缺陷信息的缺陷分类与识别。 展开更多
关键词 钢轨表面缺陷检测 机器视觉 图像处理 缺陷分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部