期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的钢轨伤损智能识别方法
被引量:
24
1
作者
孙次锁
刘军
+1 位作者
秦勇
张玉华
《中国铁道科学》
EI
CAS
CSCD
北大核心
2018年第5期51-57,共7页
基于钢轨探伤车检测数据通道设计、B显数据生成原理和钢轨伤损分类,对比钢轨探伤车检测数据伤损识别与普通图像识别特点的不同,将检测数据视为由16个通道二进制矩阵叠加成的图像;设计包含1个输入层、3个卷积层、3个池化层、2个全连接层...
基于钢轨探伤车检测数据通道设计、B显数据生成原理和钢轨伤损分类,对比钢轨探伤车检测数据伤损识别与普通图像识别特点的不同,将检测数据视为由16个通道二进制矩阵叠加成的图像;设计包含1个输入层、3个卷积层、3个池化层、2个全连接层、1个输出层的深度学习架构,并通过噪声和通道预处理,将钢轨伤损的"物体检测"问题转换为"分类"问题。以某地人造钢轨伤损检测数据扩充后作为训练集,得到基于深度学习的钢轨伤损智能识别模型,以另一地的人造钢轨伤损检测数据作为测试数据分析该模型的识别效果,并与钢轨探伤车既有系统识别结果和人工分析结果进行对比。结果表明:基于深度学习的钢轨伤损智能识别模型在准确率、误报率指标上均优于钢轨探伤车既有系统,达到人工分析的指标要求,提高了准确率。
展开更多
关键词
钢轨
超声波
探
伤
深度学习
卷积神经网络
钢轨伤损识别
在线阅读
下载PDF
职称材料
题名
基于深度学习的钢轨伤损智能识别方法
被引量:
24
1
作者
孙次锁
刘军
秦勇
张玉华
机构
北京交通大学交通运输学院
中国铁道科学研究院集团有限公司基础设施检测研究所
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
2018年第5期51-57,共7页
基金
国家重点研发计划项目(2016YFF0103701)
文摘
基于钢轨探伤车检测数据通道设计、B显数据生成原理和钢轨伤损分类,对比钢轨探伤车检测数据伤损识别与普通图像识别特点的不同,将检测数据视为由16个通道二进制矩阵叠加成的图像;设计包含1个输入层、3个卷积层、3个池化层、2个全连接层、1个输出层的深度学习架构,并通过噪声和通道预处理,将钢轨伤损的"物体检测"问题转换为"分类"问题。以某地人造钢轨伤损检测数据扩充后作为训练集,得到基于深度学习的钢轨伤损智能识别模型,以另一地的人造钢轨伤损检测数据作为测试数据分析该模型的识别效果,并与钢轨探伤车既有系统识别结果和人工分析结果进行对比。结果表明:基于深度学习的钢轨伤损智能识别模型在准确率、误报率指标上均优于钢轨探伤车既有系统,达到人工分析的指标要求,提高了准确率。
关键词
钢轨
超声波
探
伤
深度学习
卷积神经网络
钢轨伤损识别
Keywords
Rail
Ultrasonic wave
Flaw detection
Deeplearning
Convolutional neural network
Rail flaw identification
分类号
U216.3 [交通运输工程—道路与铁道工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的钢轨伤损智能识别方法
孙次锁
刘军
秦勇
张玉华
《中国铁道科学》
EI
CAS
CSCD
北大核心
2018
24
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部