利用VOF(volume of fluid)方法和Lagrangian离散模型模拟了厚度为135 mm中薄板坯连铸结晶器内的钢液流动及钢/渣界面波动行为,分析了结晶器宽度、水口浸入深度、水口侧孔倾角、拉速和吹氩对结晶器内钢液流动和液面波动的影响规律.结果表...利用VOF(volume of fluid)方法和Lagrangian离散模型模拟了厚度为135 mm中薄板坯连铸结晶器内的钢液流动及钢/渣界面波动行为,分析了结晶器宽度、水口浸入深度、水口侧孔倾角、拉速和吹氩对结晶器内钢液流动和液面波动的影响规律.结果表明:钢液从三孔浸入式水口流入结晶器后形成上、下三个回流区;吹氩使结晶器上回流区靠近水口附近形成二次涡流;在一定拉速下,增加水口侧孔倾角和浸入深度均能有效抑制钢/渣界面波动;增加拉速和在一定拉速下增加结晶器宽度均将加剧液面波动.展开更多
The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the stre...The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill.展开更多
Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified th...Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified through the experimental results.The results show that[Si]-[O]reaction is the control reaction,and with the increase of basicity of slag,the limitation of deoxidation was decreased.The limitation of deoxidation is the lowest for the slag with basicity of 2.0.Under the conditions of the basicity of 2.0 and the content of CaF_(2) more than 50%,the limitation of deoxidation is less than 10×10^(−6),and it does not depend on the contents of Al_(2)O_(3) and CaF_(2) in slags.The mass transport of oxygen in the metal phase is the rate-controlling step,and the slag composition has no effect on the equilibrium time of deoxidation.Based on this finding,the optimized slag composition is designed and it contains the following components:51.5%CaF_(2),20.3%MgO,16.2%Al_(2)O_(3),8.2%CaO and 3.8%SiO_(2).In the case of the optimized deoxidizing slag,the total oxygen content in H13 steel can be reduced from 25×10^(−6) to 6×10^(−6).展开更多
文摘利用VOF(volume of fluid)方法和Lagrangian离散模型模拟了厚度为135 mm中薄板坯连铸结晶器内的钢液流动及钢/渣界面波动行为,分析了结晶器宽度、水口浸入深度、水口侧孔倾角、拉速和吹氩对结晶器内钢液流动和液面波动的影响规律.结果表明:钢液从三孔浸入式水口流入结晶器后形成上、下三个回流区;吹氩使结晶器上回流区靠近水口附近形成二次涡流;在一定拉速下,增加水口侧孔倾角和浸入深度均能有效抑制钢/渣界面波动;增加拉速和在一定拉速下增加结晶器宽度均将加剧液面波动.
基金Project(52308316)supported by the National Natural Science Foundation of China,Project(BBJ2024088)supported by the Fundamental Research Funds for the Central Universities(PhD.Top Innovative Talents Fund of CUMTB),China。
文摘The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill.
基金Project(18SYXHZ0069)supported by the Science and Technology Program of Sichuan Province,ChinaProjects(51974139,51664021)supported by the National Natural Science Foundation of China。
文摘Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified through the experimental results.The results show that[Si]-[O]reaction is the control reaction,and with the increase of basicity of slag,the limitation of deoxidation was decreased.The limitation of deoxidation is the lowest for the slag with basicity of 2.0.Under the conditions of the basicity of 2.0 and the content of CaF_(2) more than 50%,the limitation of deoxidation is less than 10×10^(−6),and it does not depend on the contents of Al_(2)O_(3) and CaF_(2) in slags.The mass transport of oxygen in the metal phase is the rate-controlling step,and the slag composition has no effect on the equilibrium time of deoxidation.Based on this finding,the optimized slag composition is designed and it contains the following components:51.5%CaF_(2),20.3%MgO,16.2%Al_(2)O_(3),8.2%CaO and 3.8%SiO_(2).In the case of the optimized deoxidizing slag,the total oxygen content in H13 steel can be reduced from 25×10^(−6) to 6×10^(−6).