Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv...Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.展开更多
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar...Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.展开更多
Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon fra...Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample.展开更多
The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stabilit...The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stability.In this work,MoSe_(2) nanosheets were synthesized by a solvothermal method.An organic solvent was intercalated into the MoSe_(2) materials to enlarge the interlayer spacing and improve the conductivity of the material.The MoSe_(2) material was coated with an organic pyrolysis carbon and then a uniform carbon layer was formed.The surface carbon hybridization of the nanosheet materials was realized by the introduction of heteroatoms during the sintering process.The as-prepared MoSe_(2)@N,P-C composites showed a superior rate performance as it could maintain the integrity of the morphology and structure under a high current density.The composites had a discharge specific capacity of 302.4 mA·h/g after 100 cycles at 0.5 A/g,and the capacity retention rate was 84.96%.展开更多
文摘Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.
文摘Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.
文摘Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample.
基金Project(51572300) supported by the National Natural Science Foundation of China。
文摘The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity;however,the application of these materials is limited by their structural collapse due to the poor structure stability.In this work,MoSe_(2) nanosheets were synthesized by a solvothermal method.An organic solvent was intercalated into the MoSe_(2) materials to enlarge the interlayer spacing and improve the conductivity of the material.The MoSe_(2) material was coated with an organic pyrolysis carbon and then a uniform carbon layer was formed.The surface carbon hybridization of the nanosheet materials was realized by the introduction of heteroatoms during the sintering process.The as-prepared MoSe_(2)@N,P-C composites showed a superior rate performance as it could maintain the integrity of the morphology and structure under a high current density.The composites had a discharge specific capacity of 302.4 mA·h/g after 100 cycles at 0.5 A/g,and the capacity retention rate was 84.96%.