This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted fr...This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted from waste catalyst.The optimized experimental conditions were determined as follows:the CO reduction temperature was set at 575℃,the reduction time was 1 hour,the CO flow rate was 50 mL/min,and furnace cooling was performed subsequently.Under these conditions,the samples obtained were predominantly composed of single-phase V_(2)O_(3).Microstructural analysis reveals tightly packed grain configurations exhibiting flake-like or block-like morphologies.Significantly,the as-synthesized V_(2)O_(3)demonstrates sufficient purity for fabricating high-performance electrolytes in all-vanadium flow batteries,showing promising electrochemical applicability.展开更多
文摘This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted from waste catalyst.The optimized experimental conditions were determined as follows:the CO reduction temperature was set at 575℃,the reduction time was 1 hour,the CO flow rate was 50 mL/min,and furnace cooling was performed subsequently.Under these conditions,the samples obtained were predominantly composed of single-phase V_(2)O_(3).Microstructural analysis reveals tightly packed grain configurations exhibiting flake-like or block-like morphologies.Significantly,the as-synthesized V_(2)O_(3)demonstrates sufficient purity for fabricating high-performance electrolytes in all-vanadium flow batteries,showing promising electrochemical applicability.