期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
双分支结构的多层级三维点云补全
被引量:
1
1
作者
邱云飞
王宜帆
《计算机工程与应用》
CSCD
北大核心
2024年第9期272-282,共11页
为了缓解现有点云补全方法在特征提取过程中很难平衡局部特征和全局特征的问题,提出了一种双分支结构的多层级点云补全算法。利用两个独立的分支网络分别提取出输入点云的局部特征信息和全局特征信息,再将两种特征信息进行拼接形成特征...
为了缓解现有点云补全方法在特征提取过程中很难平衡局部特征和全局特征的问题,提出了一种双分支结构的多层级点云补全算法。利用两个独立的分支网络分别提取出输入点云的局部特征信息和全局特征信息,再将两种特征信息进行拼接形成特征向量。使用五层联合感知机将特征向量映射成多个维度,进而提取多维特征信息并将其整合成最终特征向量。采用金字塔结构在256、512、1024特征维度上对最终特征向量进行特征解码,预测三种不同分辨率的点云。引入鉴别器网络,通过联合训练鉴别器产生的对抗损失和分层重建点云产生的补全损失去优化网络。在ShapeNet数据集上进行实验,算法显著提升了点云补全精度,并且在缺失大面积点云时也能恢复出较为完善的物体形状。
展开更多
关键词
三维点云
形状补全
深度学习
双分支结构
鉴别器网络
在线阅读
下载PDF
职称材料
题名
双分支结构的多层级三维点云补全
被引量:
1
1
作者
邱云飞
王宜帆
机构
辽宁工程技术大学软件学院
出处
《计算机工程与应用》
CSCD
北大核心
2024年第9期272-282,共11页
基金
国家自然科学基金(71771111)。
文摘
为了缓解现有点云补全方法在特征提取过程中很难平衡局部特征和全局特征的问题,提出了一种双分支结构的多层级点云补全算法。利用两个独立的分支网络分别提取出输入点云的局部特征信息和全局特征信息,再将两种特征信息进行拼接形成特征向量。使用五层联合感知机将特征向量映射成多个维度,进而提取多维特征信息并将其整合成最终特征向量。采用金字塔结构在256、512、1024特征维度上对最终特征向量进行特征解码,预测三种不同分辨率的点云。引入鉴别器网络,通过联合训练鉴别器产生的对抗损失和分层重建点云产生的补全损失去优化网络。在ShapeNet数据集上进行实验,算法显著提升了点云补全精度,并且在缺失大面积点云时也能恢复出较为完善的物体形状。
关键词
三维点云
形状补全
深度学习
双分支结构
鉴别器网络
Keywords
three-dimensional point cloud
shape completion
deep learning
dual-branch structure
discriminator network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
双分支结构的多层级三维点云补全
邱云飞
王宜帆
《计算机工程与应用》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部