针对航空不安全事件领域命名实体识别任务,以航空安全信息周报为数据源,分析并构建航空不安全事件命名实体识别数据集和领域词典。为解决传统命名实体识别模型对于捕获领域实体边界性能较差的问题,基于BERT(bidirectional encoder repre...针对航空不安全事件领域命名实体识别任务,以航空安全信息周报为数据源,分析并构建航空不安全事件命名实体识别数据集和领域词典。为解决传统命名实体识别模型对于捕获领域实体边界性能较差的问题,基于BERT(bidirectional encoder representations from transformers)预训练语言模型提出融合领域词典嵌入的领域语义信息增强的方法。在自建数据集上进行多次对比实验,结果表明:所提出的方法可以进一步提升实体边界的识别率,相较于传统的双向长短期记忆网络-条件随机场(bi-directional long short term memory-conditional random field,BiLSTM-CRF)命名实体识别模型,性能提升约5%。展开更多
针对互联网开放数据中文本表述模糊、实体边界不清等问题,构建航天语料库Space-Corpus,提出一种基于BERT+Bi-LSTM+CRF的航天领域命名实体识别模型。基于微调的多层双向Transformer编码器(bidirectional encoder representations from tr...针对互联网开放数据中文本表述模糊、实体边界不清等问题,构建航天语料库Space-Corpus,提出一种基于BERT+Bi-LSTM+CRF的航天领域命名实体识别模型。基于微调的多层双向Transformer编码器(bidirectional encoder representations from transformer,BERT)模型生成输入语料的向量化表示,结合双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)获取上下文特征,通过条件随机场(conditional random field,CRF)层进行序列解码标注,输出得分最高的预测标签。实验结果表明,该模型在Space-Corpus语料库上较基于BERT模型、基于BERT+Bi-LSTM以及基于CNN+Bi-LSTM+CRF识别模型的准确率、召回率及F1值均有提升。展开更多
为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列...为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。展开更多
文摘针对航空不安全事件领域命名实体识别任务,以航空安全信息周报为数据源,分析并构建航空不安全事件命名实体识别数据集和领域词典。为解决传统命名实体识别模型对于捕获领域实体边界性能较差的问题,基于BERT(bidirectional encoder representations from transformers)预训练语言模型提出融合领域词典嵌入的领域语义信息增强的方法。在自建数据集上进行多次对比实验,结果表明:所提出的方法可以进一步提升实体边界的识别率,相较于传统的双向长短期记忆网络-条件随机场(bi-directional long short term memory-conditional random field,BiLSTM-CRF)命名实体识别模型,性能提升约5%。
文摘针对互联网开放数据中文本表述模糊、实体边界不清等问题,构建航天语料库Space-Corpus,提出一种基于BERT+Bi-LSTM+CRF的航天领域命名实体识别模型。基于微调的多层双向Transformer编码器(bidirectional encoder representations from transformer,BERT)模型生成输入语料的向量化表示,结合双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)获取上下文特征,通过条件随机场(conditional random field,CRF)层进行序列解码标注,输出得分最高的预测标签。实验结果表明,该模型在Space-Corpus语料库上较基于BERT模型、基于BERT+Bi-LSTM以及基于CNN+Bi-LSTM+CRF识别模型的准确率、召回率及F1值均有提升。
文摘为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。