期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于金融技术指标的用电数据分析 被引量:1
1
作者 杨安 蒋群 +2 位作者 孙钢 殷杰 刘英 《计算机应用》 CSCD 北大核心 2022年第3期904-910,共7页
针对已有用电数据分析缺乏有效描述趋势性特征的不足,适应性地将金融领域中十字过滤线(VHF)、异同移动平均线(MACD)等技术指标迁移至用电数据分析中,提出了基于金融技术指标的异动检测算法和负荷预测算法。所提异动检测算法通过统计各... 针对已有用电数据分析缺乏有效描述趋势性特征的不足,适应性地将金融领域中十字过滤线(VHF)、异同移动平均线(MACD)等技术指标迁移至用电数据分析中,提出了基于金融技术指标的异动检测算法和负荷预测算法。所提异动检测算法通过统计各指标的统计情况划定阈值,并采用阈值检测捕捉用户异常用电行为。所提负荷预测算法通过提取14项与金融技术指标相关的日负荷特征,构建了长短期记忆网络(LSTM)负荷预测模型。在杭州市工业用电数据上的实验结果表明,所提负荷预测算法将平均绝对百分比误差(MAPE)降低至9.272%,相较于差分整合移动平均自回归(ARIMA)算法、Prophet算法和支持向量机(SVM)算法,分别将MAPE降低了2.322、24.175和1.310个百分点,能够较好地应用于用电数据分析中。 展开更多
关键词 用电数据分析 智能电网 金融技术指标 异动检测 负荷预测 长短期记忆网络
在线阅读 下载PDF
基于时空图注意力网络的云平台负载数据预测方法
2
作者 李英健 王永生 +1 位作者 刘晓君 任渊 《计算机科学》 北大核心 2025年第S1期696-703,共8页
实时预测云平台监控收集的负载数据,有助于云运维中及早获取系统未来的性能趋势。但由于负载数据通常不具备明显的周期性或规律性,存在较多的噪声干扰,现有方法在特征学习规划上存在不足,需要依赖其他负载特征并且难以捕捉负载趋势的动... 实时预测云平台监控收集的负载数据,有助于云运维中及早获取系统未来的性能趋势。但由于负载数据通常不具备明显的周期性或规律性,存在较多的噪声干扰,现有方法在特征学习规划上存在不足,需要依赖其他负载特征并且难以捕捉负载趋势的动量。为实现精准高效的负载数据预测,提出了一种基于时空图注意力网络的云平台负载数据预测方法。首先,运用改进经验小波变换对负载数据做时频域变换,降低噪声干扰并得到有效分解后的模态特征;为了提高模型处理尖峰和非周期性特征的能力,利用金融技术指标设计适合负载数据特性的关键性能因子;然后,将模态特征和关键性能因子与原始序列进行特征重构,构建图学习层;最后,利用图注意力网络动态捕获负载序列和特征之间的关系,并通过双向长短期记忆网络关注时间依赖信息。使用亚马逊和阿里云等负载数据集进行实验验证,结果表明,在4个数据集上,RMSE相比最优对比模型分别降低了13.44%,36.90%,7.41%和14.93%。 展开更多
关键词 云平台 负载预测 经验小波变换 金融技术指标 图注意力网络 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部