针对以往场景识别研究中将图像分割成大小相等的矩形区域进行特征提取而导致识别率低的问题,提出了一种基于超像素空间金字塔模型的场景识别方法:先对图像做不同分辨率的超像素分割,在得到的每个图像子区域中提取PACT特征,然后利用K-me...针对以往场景识别研究中将图像分割成大小相等的矩形区域进行特征提取而导致识别率低的问题,提出了一种基于超像素空间金字塔模型的场景识别方法:先对图像做不同分辨率的超像素分割,在得到的每个图像子区域中提取PACT特征,然后利用K-means聚类构建出图像集的视觉词典。在进行场景识别时,将每幅图像所有分割子区域的PACT特征连接成一个特征向量,并加入bag of words特征进行分类,最终的场景分类结果在支持向量机LIBSVM上获得。实验结果表明该算法能够有效提高识别率。展开更多
文摘深度学习模型中的特征金字塔网络(Feature Pyramid Network,FPN)常被用作合成孔径雷达(Synthetic Aperture Radar,SAR)图像中多目标船舶的检测。针对复杂场景下多目标船舶检测问题,提出了一种基于改进锚点框的FPN模型。首先将特征金字塔模型嵌入传统的RPN(Region Proposal Network)并映射成新的特征空间用于目标检测,然后利用基于形状相似度距离(Shape Similar Distance,SSD)度量的Kmeans聚类算法优化FPN的初始锚点框,并使用SAR船舶数据集测试。实验结果表明,所提算法目标检测精确率达到98.62%,在复杂场景下与YOLO、Faster RCNN、FPN based on VGG/ResNet等模型进行对比,模型准确率提高,整体性能更好。
文摘针对以往场景识别研究中将图像分割成大小相等的矩形区域进行特征提取而导致识别率低的问题,提出了一种基于超像素空间金字塔模型的场景识别方法:先对图像做不同分辨率的超像素分割,在得到的每个图像子区域中提取PACT特征,然后利用K-means聚类构建出图像集的视觉词典。在进行场景识别时,将每幅图像所有分割子区域的PACT特征连接成一个特征向量,并加入bag of words特征进行分类,最终的场景分类结果在支持向量机LIBSVM上获得。实验结果表明该算法能够有效提高识别率。