期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于动态金字塔和子空间注意力的图像超分辨率重建网络 被引量:6
1
作者 何鹏浩 余映 徐超越 《计算机科学》 CSCD 北大核心 2022年第S02期423-430,共8页
针对现有单图像超分辨率卷积神经网络存在模型参数过多以及重建失真过大的问题,提出了一种基于动态金字塔结构与子空间注意力模块的轻量级单图像超分辨率网络模型。首先,所采用的动态多尺度金字塔特征组合模块的网络主体由动态卷积和金... 针对现有单图像超分辨率卷积神经网络存在模型参数过多以及重建失真过大的问题,提出了一种基于动态金字塔结构与子空间注意力模块的轻量级单图像超分辨率网络模型。首先,所采用的动态多尺度金字塔特征组合模块的网络主体由动态卷积和金字塔分组卷积构成。其次,动态卷积可以根据不同的图像内容自适应地进行不同的卷积操作,从而对不同的图像提取出不同的特征;金字塔分组卷积不仅可以更好地提取多尺度图像特征信息,而且能够有效降低网络模型的参数量。最后,在网络模型末端采用子空间注意力模块,将图像的通道空间分为多个子空间,并为每个子空间学习不同的注意力图,这样不仅可以更好地捕获图像的跨通道相关信息,而且可以有效融合各子空间的图像特征信息。与现有主流算法相比,所提方法不仅具有更小的网络模型参数量,而且重建出的超分辨率图像在视觉效果和定量分析方面均能取得更好的表现。 展开更多
关键词 超分辨率 轻量级 动态卷积 金字塔分组卷积 子空间注意力模块
在线阅读 下载PDF
聚焦形状特征的路面病害检测算法 被引量:2
2
作者 邓天民 陈月田 +2 位作者 余洋 谢鹏飞 李庆营 《计算机工程与应用》 CSCD 北大核心 2024年第24期291-305,共15页
路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YO... 路面病害自动化检测是实现道路智慧化管养的关键技术之一,针对路面病害图像中病害目标占比小、不同类型病害尺度差异大、背景环境复杂等特性,基于YOLOv8架构,提出聚焦形状特征的路面病害检测算法FSF-YOLO(focusing on shape features YOLO)。构建一种无信息丢失的加强特征提取模块,通过保留多维度空间特征信息,增强骨干网络对低分辨率图像和细小病害目标的特征提取能力;引入可形变注意力特征融合模块,利用病害细长形状特征拓展目标识别区域,提高模型对于长距离病害目标的特征表达能力;运用分组卷积空间金字塔池化模块,强化不同尺寸病害目标特征识别;采用轻量级共享卷积检测头,减少网络参数量和计算量。实验结果表明,提出的方法对不同类别的路面病害目标均获得了较好的效果,在RDD2022数据集上的平均精度达到67.3%,与原算法相比提升了5.3个百分点,整体性能优于其他路面病害检测算法。 展开更多
关键词 路面病害检测 形状特征 可形变注意力 分组卷积空间金字塔 YOLOv8
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部