期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
基于密集多尺度特征和双注意力模块的皮肤病变分割 被引量:2
1
作者 费承 罗健旭 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期97-105,共9页
针对皮肤病变分割任务中病变区域大小不一、形状各异、内部像素差异大、边界模糊、周围存在气泡等问题,提出了一种基于密集多尺度特征和双注意力模块的U型分割网络DDAnet。该网络中的DenseASPP模块通过密集连接多个空洞卷积层来获取丰... 针对皮肤病变分割任务中病变区域大小不一、形状各异、内部像素差异大、边界模糊、周围存在气泡等问题,提出了一种基于密集多尺度特征和双注意力模块的U型分割网络DDAnet。该网络中的DenseASPP模块通过密集连接多个空洞卷积层来获取丰富的多尺度信息,同时由通道注意力模块(CAM)和位置注意力模块(PAM)构成的双注意力模块通过编码全局上下文信息,在通道和位置上对特征图进行重新配准,实现对相关特征的强调和对无关特征的抑制。两个模块并行连接、共同作用以提高分割精度。在ISIC2018数据集上,DDAnet的准确率(Acc)、Jaccard相似系数(JI)、Dice系数(DC)、敏感度(Sen)和特异性(Spec)指标值分别为96.75%、85.00%、91.36%、91.82%和97.42%,分割结果优于其他的分割网络,并且对于极具挑战的病例,DDAnet仍然能够产生准确、可靠的分割结果,说明其具备在临床诊断中辅助医生进行皮肤病变分割的潜力。 展开更多
关键词 皮肤病变分割 DenseASPP模块 CAM PAM 注意力模块
在线阅读 下载PDF
一种基于轻量化卷积模块的语义分割网络
2
作者 连晓峰 康毛毛 +1 位作者 谭励 王艳莉 《应用科学学报》 北大核心 2025年第1期66-79,共14页
融合深度学习的语义同步定位与地图构建技术为处理动态场景提供了有效的解决方案,但仍面临计算资源消耗大和模型复杂度高的挑战。为此,提出了一种基于BlendMask改进的轻量化语义分割网络。首先,设计了一种轻量的GDS-ECA卷积(Ghost-depth... 融合深度学习的语义同步定位与地图构建技术为处理动态场景提供了有效的解决方案,但仍面临计算资源消耗大和模型复杂度高的挑战。为此,提出了一种基于BlendMask改进的轻量化语义分割网络。首先,设计了一种轻量的GDS-ECA卷积(Ghost-depthwise separable convolution with efficient channel attention)模块,利用深度可分离卷积替代Ghost卷积中的少量卷积操作,减少参数量和计算量,并添加注意力机制提升特征表达能力。其次,提出了特征提取网络BGTNet(bottleneck GDS-ECA attention transformer network),将GDS-ECA卷积应用于颈部模块的卷积层以提升网络的提取精度;此外,将特征金字塔网络(feature pyramid network,FPN)中的传统卷积替换为GDS-ECA卷积,构建轻量化特征金字塔网络,并结合BGTNet形成语义分割网络的主干网。最后在数据集COCO上进行了实验验证,改进后的模型处理图像时间缩短了7.3 ms,平均精度提升了1.5%。 展开更多
关键词 语义分割 同步定位与地图构建 轻量化 注意力机制 特征金字塔
在线阅读 下载PDF
基于感知注意力和轻量金字塔融合网络模型的室内场景语义分割方法 被引量:5
3
作者 李钰 袁晴龙 +1 位作者 徐少铭 和嘉鹏 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期116-127,共12页
针对实验室场景理解时存在背景复杂、光照多变等问题,利用RGB信息与深度信息在场景理解中具有互补性的特点,提出了一种感知注意力和轻量空间金字塔融合的网络模型(Perception Attention and Lightweight Spatial Fusion Network,PLFNet... 针对实验室场景理解时存在背景复杂、光照多变等问题,利用RGB信息与深度信息在场景理解中具有互补性的特点,提出了一种感知注意力和轻量空间金字塔融合的网络模型(Perception Attention and Lightweight Spatial Fusion Network,PLFNet)。在该模型的感知注意力模块中,利用RGB图像与深度图像在网络中的权重不同,以加权的方式实现深度信息对RGB信息的多级辅助;在轻量空间金字塔池化模块中,通过增加级联的空洞空间卷积,不但有效地聚集了多尺度特征,而且比传统空间金字塔池化模块的参数量减少了约92%,使RGB信息和深度信息的融合更充分。在两个室内场景公开数据集上的实验结果表明,该模型的表现均优于经典算法。消融实验结果表明,本文模型添加感知注意力模块和轻量空间金字塔池化模块后,平均交并比分别提高了4.3%和3.5%。最后,利用场景较复杂的生物实验室数据集进行测试,结果表明本文模型可以有效地实现对生物实验室的场景理解。 展开更多
关键词 生物实验室场景 感知注意力 轻量金字塔 多尺度特征 语义分割 融合
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:1
4
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
融合空间分割注意力的织物材质识别方法
5
作者 南科良 靳雁霞 +3 位作者 王松松 王婷 张晓竺 张壮威 《现代纺织技术》 北大核心 2024年第12期58-67,共10页
针对传统神经网络检测织物材质精确度低、检测速度慢的问题,提出一种融合空间分割注意力的织物材质识别算法。首先对多种材质的织物风吹视频进行分帧处理,得到织物图像。接着进行数据预处理,并采集织物图像的时序信息,利用欧氏距离计算... 针对传统神经网络检测织物材质精确度低、检测速度慢的问题,提出一种融合空间分割注意力的织物材质识别算法。首先对多种材质的织物风吹视频进行分帧处理,得到织物图像。接着进行数据预处理,并采集织物图像的时序信息,利用欧氏距离计算织物图像中同一像素点在时间前后的位移量,将织物图像进行区域划分。将处理后的图像输入到注意力网络中进行特征提取,采取深度可分离卷积(DSC)替代普通卷积,以减少网络参数与计算量,增强网络的特征提取能力。然后在每个卷积层后引入空间分割注意力模块(SPAM)来增强重要特征,防止特征图信息丢失过多,提升网络精度。最后通过全局平均池化层和softmax层实现织物材质的识别。结果表明:所提出的织物材质识别算法能够快速、有效地对织物材质进行分类识别,准确率达到93.9%,单张图片检测时间为83.14 ms,在保证识别精度的同时具有较强的实时性。 展开更多
关键词 织物材质识别 空间分割注意力模块 区域划分 卷积神经网络 深度可分离卷积
在线阅读 下载PDF
基于高级语义及注意力的肺结节分割模型
6
作者 丰晓钰 王明泉 +3 位作者 李磊磊 朱焕宇 李文波 谢绍鹏 《现代电子技术》 北大核心 2024年第5期60-64,共5页
为了能够早些发现肺结节患者,进行有效的预防和治疗,便能够大大提升肺癌患者的生存率,针对医学CT图像肺结节分割时存在异质性,会导致分割精度降低,提出一种基于高级语义及注意力的肺结节分割模型。该模型使用VGG16作为主干网络搭建U-ne... 为了能够早些发现肺结节患者,进行有效的预防和治疗,便能够大大提升肺癌患者的生存率,针对医学CT图像肺结节分割时存在异质性,会导致分割精度降低,提出一种基于高级语义及注意力的肺结节分割模型。该模型使用VGG16作为主干网络搭建U-net模型;采用金字塔池化模块(PPM),在尽可能保留原信息的情况下,将深层信息进行加强提取,得到更加丰富的高级语义信息;同时利用CA注意力机制强化重要的特征,实现空间和通道方向上的信息整合;使用Focal Loss和Dice Loss函数解决肺结节分割中前背景不均衡和难区分的问题。实验结果显示,所提出的方法在IoU、F1分数指标上较U-net分割算法分别提高了1.33%、0.95%,有效地提升了分割精度,解决了与其他组织对比度低的问题。 展开更多
关键词 深度学习 医学CT图像 肺结节分割 U-net 注意力机制 金字塔池化 损失函数 分割精度
在线阅读 下载PDF
基于注意力机制的多尺度手部分割方法
7
作者 周雯晴 代素敏 +1 位作者 王阳萍 王文润 《液晶与显示》 CAS CSCD 北大核心 2024年第11期1506-1518,共13页
针对手部边缘细节信息分割不精确及小面积手部的错检、漏检问题,提出一种基于注意力机制的多尺度手部分割方法。首先,对Transformer模块重新进行设计优化,提出窗口自注意力结构和双分支前馈神经网络(Dual-branch FeedForward Networks,D... 针对手部边缘细节信息分割不精确及小面积手部的错检、漏检问题,提出一种基于注意力机制的多尺度手部分割方法。首先,对Transformer模块重新进行设计优化,提出窗口自注意力结构和双分支前馈神经网络(Dual-branch FeedForward Networks,D-FFN)机制,通过窗口自注意力机制整合全局和局部的依赖信息,D-FFN抑制背景信息的干扰;然后,提出一种结合条形池化和级联网络的多尺度特征提取模块增大感受野,提高手部分割模型的准确性和鲁棒性;最后,提出基于Triplet Attention机制的上采样解码器模块,通过调节通道维度与空间维度的注意力权重将目标特征和背景的冗余特征区分开。将所提算法在公开数据集GTEA(Georgia Tech Egocentric Activity)和EYTH(EgoYouTubeHands)上测试,实验结果表明,该算法在两个数据集上的平均交并比(MIoU)值分别达到了95.8%和90.2%,相较于TransUnet算法分别提升了2.5%和2.1%,满足手部图像分割的稳定可靠、精度高、抗干扰能力强等要求。 展开更多
关键词 手部分割 深度学习 TransUnet 前馈神经网络 空洞空间金字塔池化模块 Triplet Attention
在线阅读 下载PDF
基于空间通道注意力的肝脏肿瘤分割
8
作者 何琼 陆雪松 《现代信息科技》 2024年第22期36-40,46,共6页
针对肝脏肿瘤分割面临的病灶形状、大小和位置差异明显等问题,文章提出了一种基于空间通道注意力的三维肝脏肿瘤分割方法。在3D U-Net的基础上融合了Transformer,提出成对全局和局部注意力PGLA(Paired Global Local Attention)模块替代T... 针对肝脏肿瘤分割面临的病灶形状、大小和位置差异明显等问题,文章提出了一种基于空间通道注意力的三维肝脏肿瘤分割方法。在3D U-Net的基础上融合了Transformer,提出成对全局和局部注意力PGLA(Paired Global Local Attention)模块替代Transformer中的传统注意力模块,并在尺度变换前引入CBAM(Convolutional Block Attention Module)模块。在肝脏肿瘤分割挑战赛数据集上的实验结果显示该方法在肿瘤分割的Dice系数上达到了69.18%,这些成绩均优于当前流行的模型,这证明了该方法在提高肝脏肿瘤分割精度方面的有效性。 展开更多
关键词 3D肝脏肿瘤分割 3D U-Net TRANSFORMER 成对全局和局部注意力模块 卷积注意力模块
在线阅读 下载PDF
基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究 被引量:3
9
作者 冯新伟 黄宇祥 王忠立 《铁道技术监督》 2023年第4期16-24,共9页
接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(... 接触网支持装置是接触网悬挂状态检测监测图像分析的关键对象,对支持装置零部件的检测定位是实现缺陷自动分析的基础。针对接触网支持装置零部件种类多、尺寸差异大、存在遮挡、部分零部件相似度高等问题,提出一种融合卷积块注意力模块(convolutional block attention module,CBAM)和双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)的接触网支持装置检测方法。在YOLO v5s网络模型基础上,该方法通过CBAM增强接触网支持装置的特征提取,结合BiFPN,实现不同零部件分辨率特征图的融合。利用4C装置获得的图像数据集,开展验证试验。试验结果表明,相对YOLO v5s网络模型,融合CBAM和BiFPN的接触网支持装置检测方法,网络平均精度mAP@0.5提高2.12%;能显著提升小目标检测效果,提高定位的准确性和稳定性,对接触网状态的智能分析有重要意义。 展开更多
关键词 接触网 支持装置 检测方法 卷积块注意力模块 双向特征金字塔网络
在线阅读 下载PDF
基于跨模态注意力融合的煤炭异物检测方法 被引量:2
10
作者 曹现刚 李虎 +3 位作者 王鹏 吴旭东 向敬芳 丁文韬 《工矿自动化》 CSCD 北大核心 2024年第1期57-65,共9页
为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采... 为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采用浅层的特征提取策略提取Depth图像的低级特征,用深度边缘与深度纹理等基础特征辅助RGB图像深层特征,以有效获得2种特征的互补信息,从而丰富异物特征的空间与边缘信息,提高检测精度;构建了基于坐标注意力与改进空间注意力的跨模态注意力融合模块(CAFM),以协同优化并融合RGB特征与Depth特征,增强网络对特征图中被遮挡异物可见部分的关注度,提高被遮挡异物检测精度;使用区域卷积神经网络(R-CNN)输出煤炭异物的分类、回归与分割结果。实验结果表明:在检测精度方面,该方法的AP相较两阶段模型中较优的Mask transfiner高3.9%;在检测效率方面,该方法的单帧检测时间为110.5 ms,能够满足异物检测实时性需求。基于跨模态注意力融合的煤炭异物检测方法能够以空间特征辅助色彩、形状与纹理等特征,准确识别煤炭异物之间及煤炭异物与输送带之间的差异,从而有效提高对复杂特征异物的检测精度,减少误检、漏检现象,实现复杂特征下煤炭异物的精确检测与像素级分割。 展开更多
关键词 煤炭异物检测 实例分割 双特征金字塔网络 跨模态注意力融合 Depth图像 坐标注意力 改进空间注意力
在线阅读 下载PDF
引入ECA注意力机制的U-Net语义分割 被引量:9
11
作者 王瑞绅 宋公飞 王明 《电光与控制》 CSCD 北大核心 2023年第1期92-96,102,共6页
多种应用依赖于数据理解的准确性,而语义图像分割有效地解决了这个问题,它为基于像素级别的场景理解提供了必要的上下文信息。鉴于ResNeXt50相比于一般的卷积操作具有更强的特征提取能力,提出了一种基于ResNeXt50的U-Net网络结构ECAU-Ne... 多种应用依赖于数据理解的准确性,而语义图像分割有效地解决了这个问题,它为基于像素级别的场景理解提供了必要的上下文信息。鉴于ResNeXt50相比于一般的卷积操作具有更强的特征提取能力,提出了一种基于ResNeXt50的U-Net网络结构ECAU-Net。在融合过程中,通过引入超强通道注意力(ECA)模块进一步增强特征表示对场景分割的判别能力。除此之外,在整体网络结构中引入空洞卷积,在不改变卷积核大小的情况下扩大图像的感受野范围,从而最大化地提高网络性能。实验结果表明,在CamVid数据集上,ECAU-Net相较于U-Net在Acc, Acc class, MIoU和FWIoU这4个评价指标上分别提高了2.1%,8.6%,8.2%和3.2%。 展开更多
关键词 语义图像分割 空洞卷积 超强通道注意力模块 U-Net
在线阅读 下载PDF
基于注意力机制的航拍图像实时语义分割方法 被引量:3
12
作者 袁旭亮 王娟 +3 位作者 武明虎 郭力权 刘子杉 陈关海 《激光杂志》 CAS 北大核心 2023年第1期122-129,共8页
目前语义分割网络存在推理速度慢、轮廓信息缺失和语义信息不充足的问题,使其不适用于航拍图像的语义分割。提出一种交叉注意力混合机制和金字塔注意力机制的解码网络用于航拍图像语义分割。首先,采用MobileNetV2为骨干网络提高实时性... 目前语义分割网络存在推理速度慢、轮廓信息缺失和语义信息不充足的问题,使其不适用于航拍图像的语义分割。提出一种交叉注意力混合机制和金字塔注意力机制的解码网络用于航拍图像语义分割。首先,采用MobileNetV2为骨干网络提高实时性推理速度;其次,提出交叉注意力混合机制解决轮廓信息缺失的问题;再次,提出金字塔注意力机制消除卷积神经网络无法捕获长范围语义信息的局限性。最后,实验结果表明,该文网络在单张GTX 3090卡,分辨率为256×256×3的DLRSD(Dense Labeling Remote Sensing Dataset)数据集中,获取73.4%的平均交并比和85.4%的像素精度,实现了196.9帧每秒的推理速度。 展开更多
关键词 航拍图像语义分割 实时语义分割 金字塔注意力机制 交叉注意力混合机制
在线阅读 下载PDF
A-LinkNet:注意力与空间信息融合的语义分割网络 被引量:3
13
作者 杜敏敏 司马海峰 《液晶与显示》 CAS CSCD 北大核心 2022年第9期1199-1208,共10页
针对道路图像语义分割中上下文信息不足以及空间细节信息易丢失等问题,本文提出一种基于LinkNet模型的实时分割方法。首先,在编码区域构建一种新的注意力机制,捕获道路图像的位置以及通道依赖,增加目标特征的提取能力。然后,在中心区域... 针对道路图像语义分割中上下文信息不足以及空间细节信息易丢失等问题,本文提出一种基于LinkNet模型的实时分割方法。首先,在编码区域构建一种新的注意力机制,捕获道路图像的位置以及通道依赖,增加目标特征的提取能力。然后,在中心区域引入空洞空间金字塔池化模型,在不影响图像分辨率的情况下捕获更加丰富的多尺度特征。在通用数据库上的实验结果表明,所提方法在Cityscapes数据集上MIoU达到了64.78%,与LinkNet相比较,提高了5.01%,同时对于细小目标物体以及边界分割视觉效果有明显的改善,分割准确率获得了较大提升。 展开更多
关键词 语义分割 注意力机制 空洞空间金字塔池化 LinkNet
在线阅读 下载PDF
基于分割注意力与线性变换的轻量化目标检测 被引量:5
14
作者 张艳 孙晶雪 +2 位作者 孙叶美 刘树东 王传启 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1195-1204,共10页
为了满足目标检测的实时性和模型轻量化需求,提高目标检测精度,对YOLOv5中的特征融合模块进行优化,提出基于金字塔分割注意力与线性变换的轻量化目标检测算法PG-YOLOv5.利用金字塔分割注意力模块,捕获不同尺度特征图的空间信息以丰富特... 为了满足目标检测的实时性和模型轻量化需求,提高目标检测精度,对YOLOv5中的特征融合模块进行优化,提出基于金字塔分割注意力与线性变换的轻量化目标检测算法PG-YOLOv5.利用金字塔分割注意力模块,捕获不同尺度特征图的空间信息以丰富特征空间,提升网络的多尺度特征表示能力,提高目标检测的精度.利用基于线性变换的GhostBottleNeck模块,以少量原始特征图与线性变换得到的特征图相结合的方式,有效减少模型参数量.算法的平均精度均值从YOLOv5L的81.2%提高到PG-YOLOv5的85.7%,PG-YOLOv5的参数量比YOLOv5L的下降了36%.将PG-YOLOv5部署到Jetson TX2,并编写目标检测软件.实验结果表明,基于Jetson TX2的目标检测系统的图像处理速度为262.1 ms/帧,PG-YOLOv5的平均精度均值为85.2%;与YOLOv5原始模型相比,PG-YOLOv5更适合边缘端部署. 展开更多
关键词 目标检测 金字塔分割注意力 线性变换 轻量化 YOLO
在线阅读 下载PDF
基于三重注意力的脑肿瘤图像分割网络 被引量:6
15
作者 韩阳 宋金淼 +1 位作者 薛安懿 段晓东 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第1期57-63,共7页
脑肿瘤图像分割问题是脑肿瘤临床诊断和治疗脑肿瘤疾病计算机辅助诊断的基础。针对脑肿瘤MRI图像分割网络深度过深和局部与全局特征信息联系匮乏导致图像分割精度降低等问题,提出一种基于三重注意力的脑肿瘤图像分割网络。首先,借鉴残... 脑肿瘤图像分割问题是脑肿瘤临床诊断和治疗脑肿瘤疾病计算机辅助诊断的基础。针对脑肿瘤MRI图像分割网络深度过深和局部与全局特征信息联系匮乏导致图像分割精度降低等问题,提出一种基于三重注意力的脑肿瘤图像分割网络。首先,借鉴残差结构,将原始图像分割网络结构的编码层和解码层中的卷积模块替换为深度残差模块,解决网络加深带来的梯度消失问题。其次,通过引入三重注意力模块,融合图像局部与全局特征信息,使网络更好地学习重要的图像特征信息,提升网络对脑肿瘤图像的分割精度。最后,在MICCAI比赛发布的BraTS脑肿瘤图像分割数据集上(包括335例患者病例),采用Dice系数等脑肿瘤评价指标进行性能评估。其中,脑肿瘤整体可达85.20%,脑肿瘤核心可达87.10%,增强脑肿瘤区域可达80.80%。实验结果显示,所提出的分割网络能够在不增加计算时间的前提下提高脑肿瘤MRI图像的分割性能。 展开更多
关键词 脑肿瘤分割 三重注意力模块 深度残差模块 MRI图像
在线阅读 下载PDF
基于注意力机制的多模态图像语义分割 被引量:4
16
作者 张吉友 张荣芬 +1 位作者 刘宇红 袁文昊 《液晶与显示》 CAS CSCD 北大核心 2023年第7期975-984,共10页
当前许多语义分割模型利用的训练数据是RGB图像,在一些极端的环境下其模型的稳定性容易受到很大的影响,不能满足夜间场景自动驾驶的实际需求。为了解决夜间场景的语义分割问题,将ResNet-152作为特征提取网络,构建了一种融合轻量化注意... 当前许多语义分割模型利用的训练数据是RGB图像,在一些极端的环境下其模型的稳定性容易受到很大的影响,不能满足夜间场景自动驾驶的实际需求。为了解决夜间场景的语义分割问题,将ResNet-152作为特征提取网络,构建了一种融合轻量化注意力模块的多模态双编码器-解码器模型。双编码器从RGB-T两种模态中提取关键信息通过注意力模块后进行融合,然后将提取到的特征信息送入解码器,分阶段拼接上采样特征图和各层编码器提取的特征图,再通过卷积层进行特征提取,通过上采样还原分辨率,最后进行语义分割。实验结果表明,该模型在MFNet测试集上的平均准确率和平均交并比分别为76%和55.7%,相比于其他网络模型在指标上取得了一定的提升,达到了应用RGB-T模态图像精准进行日间及夜间场景语义分割的基本要求。 展开更多
关键词 夜间语义分割 多模态 轻量化注意力模块 多尺度信息
在线阅读 下载PDF
VCDG-UNet模型在遥感图像分割中的应用
17
作者 郑海洋 于淼 于晓鹏 《无线电工程》 2025年第1期94-104,共11页
针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet... 针对遥感图像建筑物的轮廓分割不完整、边界分割模糊和阴影干扰等导致的错误分割问题,提出一种基于VGG16的卷积块注意力深度可分离卷积U-Net网络(VGG16 Convolutional Block Attention and Deep Separable Convolution U-Net,VCDG-UNet)。为对建筑物特征进行提取,编码器部分模型以具有强大特征提取能力的VGG16作为骨干网络;解码器部分用深度可分离卷积代替普通卷积来减少参数量并融合不同尺度的特征;引入卷积块注意力模块(Convolutional Block Attention Module,CBAM)加入跳跃连接中,使其更有效地从不同尺度的图像中提取上下文信息并提高其对重要区域的关注度;为解决网络训练过程中的梯度消失问题,使用了高斯误差线性单元(Gaussian Error Linear Unit,GELU)。实验结果显示,改进后的网络在WHU和INRIA数据集上的平均交并比(mean Intersection over Union,mIoU)和F1-score分别达到了94.20%、96.83%和89.69%、94.51%,相较于基础模型高出了1.59%、0.76%和2.8%、1.59%。 展开更多
关键词 遥感图像分割 深度学习 U-Net 卷积块注意力模块 高斯误差线性单元
在线阅读 下载PDF
用于图像分割的强制召回特征注意力网络
18
作者 魏建华 李佳颖 +1 位作者 黄成健 胡庆茂 《集成技术》 2020年第6期59-70,共12页
为解决医学图像中前景背景比例严重失衡及小目标区域难以分割的问题,该文提出了一种基于高斯图像金字塔的注意力网络。具体地,首先在特征解码阶段将空间信息与抽象信息进行特征融合;其次,设计了一个特征召回器以强制编码器减少遗漏感兴... 为解决医学图像中前景背景比例严重失衡及小目标区域难以分割的问题,该文提出了一种基于高斯图像金字塔的注意力网络。具体地,首先在特征解码阶段将空间信息与抽象信息进行特征融合;其次,设计了一个特征召回器以强制编码器减少遗漏感兴趣区域的特征;最后,引入分类精度和全局区域重叠项组成的混合损失函数来处理医学图像前景背景严重不平衡问题。所提出的方法在膝关节软骨数据集和COVOID-19胸部CT数据集中进行了验证,其分割区域分别占2.08%和10.73%。与U-Net及其主流变体相比,该方法在两个数据集上都得到了最佳的Dice系数,分别为0.884±0.032和0.831±0.072。 展开更多
关键词 图像分割 高斯图像金字塔 注意力网络 特征召回器 混合损失函数
在线阅读 下载PDF
基于改进HRNet和PPM的图像语义分割方法的研究
19
作者 师佳琪 杨皓浚 +1 位作者 刘晓悦 陈鑫 《现代电子技术》 北大核心 2025年第7期29-34,共6页
为解决现有语义分割模型无法兼顾全局语义信息与局部细节信息,以及残差模块细节特征提取能力弱的问题,提出一种语义分割方法。在HRNet的基础上引入了金字塔池化模块,兼顾了全局语义信息和局部细节信息,同时在原有残差模块Basic Block的... 为解决现有语义分割模型无法兼顾全局语义信息与局部细节信息,以及残差模块细节特征提取能力弱的问题,提出一种语义分割方法。在HRNet的基础上引入了金字塔池化模块,兼顾了全局语义信息和局部细节信息,同时在原有残差模块Basic Block的基础上引入大核深度卷积提高模型的细节特征提取能力,大幅度提高模型的精度。在PASCAL VOC2012图像数据集上的实验表明,相较于原始HRNet等其他分割网络,该算法取得了分割精度的显著提升,平均分割精度达到了89.27%。各设计模块的有效性也通过消融实验得以验证,尤其是改进Basic Block对提升分割性能具有关键作用,该模型大幅度提升了图像语义分割精度,提供了一种高效率、稳定且适用场景更加普遍的多尺度语义分割算法。 展开更多
关键词 HRNet 金字塔池化模块 大核深度卷积 残差模块 语义分割 深度学习
在线阅读 下载PDF
融合多尺度分形注意力的红外小目标检测模型 被引量:2
20
作者 谷雨 张宏宇 孙仕成 《电子与信息学报》 EI CSCD 北大核心 2023年第8期3002-3011,共10页
为提高红外图像小目标检测的性能,融合传统方法的先验知识和深度学习方法的特征学习能力,该文设计了一种融合多尺度分形注意力的红外小目标端到端检测模型。首先,在对适用于红外图像弱小目标检测的多尺度分形特征分析基础上,给出了基于... 为提高红外图像小目标检测的性能,融合传统方法的先验知识和深度学习方法的特征学习能力,该文设计了一种融合多尺度分形注意力的红外小目标端到端检测模型。首先,在对适用于红外图像弱小目标检测的多尺度分形特征分析基础上,给出了基于深度学习算子对其进行加速计算的过程。其次,设计卷积神经网络(CNN)学习度量得到目标显著性分布图,结合特征金字塔注意力模块和金字塔池化下采样模块,提出了一种基于多尺度分形特征的注意力模块。将其嵌入到红外目标语义分割模型时,采用非对称上下文融合机制提高浅层特征和深层特征的融合效果,并利用非对称金字塔非局部模块获取全局注意力,以提高红外小目标检测性能。最后,采用单帧红外小目标(SIRST)数据集验证提出算法的性能,所提模型交并比(IoU)和归一化交并比(nIoU)分别达到了77.4%和76.1%,优于目前已知方法的性能。同时通过迁移实验进一步验证了提出模型的有效性。由于有效地融合了传统方法和深度学习方法的优势,所提模型适用于复杂环境下的红外小目标检测。 展开更多
关键词 红外小目标检测 语义分割 多尺度分形特征 注意力机制 金字塔池化下采样
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部