In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
A method was demonstrated based on Infomax independent component analysis(Infomax ICA) for automatically extracting auditory P300 signals within several trials. A signaling equilibrium algorithm was proposed to enhanc...A method was demonstrated based on Infomax independent component analysis(Infomax ICA) for automatically extracting auditory P300 signals within several trials. A signaling equilibrium algorithm was proposed to enhance the effectiveness of the Infomax ICA decomposition. After the mixed signal was decomposed by Infomax ICA, the independent component(IC) used in auditory P300 reconstruction was automatically chosen by using the standard deviation of the fixed temporal pattern. And the result of auditory P300 was reconstructed using the selected ICs. The experimental results show that the auditory P300 can be detected automatically within five trials. The Pearson correlation coefficient between the standard signal and the signal detected using the proposed method is significantly greater than that between the standard signal and the signal detected using the average method within five trials. The wave pattern result obtained using the proposed algorithm is better and more similar to the standard signal than that obtained by the average method for the same number of trials. Therefore, the proposed method can automatically detect the effective auditory P300 within several trials.展开更多
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and...Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.展开更多
The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrheniu...The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrhenius behavior and modifying the baseline of DSC curves, has been proposed. The results show that JMAK exponent and recrystallization activation energy of the drawn copper wires with a strain of 2.77 are about 2.39 and 125 k J/mol, respectively. The line linking the tangency points of DSC curve hypotenuse can be used as the baseline when calculating recrystallization fraction. The JMAK exponent obtained by the DSC method is in a good agreement with that obtained by microhardness measurements. Compared to traditional methods to measure the exponent, the proposed method is faster and less labor intensive.展开更多
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.
基金Projects(81460273,61265006)supported by the National Natural Science Foundation of ChinaProject(2013GXNSFAA019325)supported by Guangxi Natural Science Foundation,ChinaProject(1348020-10)supported by Guangxi Science and Technology Program,China
文摘A method was demonstrated based on Infomax independent component analysis(Infomax ICA) for automatically extracting auditory P300 signals within several trials. A signaling equilibrium algorithm was proposed to enhance the effectiveness of the Infomax ICA decomposition. After the mixed signal was decomposed by Infomax ICA, the independent component(IC) used in auditory P300 reconstruction was automatically chosen by using the standard deviation of the fixed temporal pattern. And the result of auditory P300 was reconstructed using the selected ICs. The experimental results show that the auditory P300 can be detected automatically within five trials. The Pearson correlation coefficient between the standard signal and the signal detected using the proposed method is significantly greater than that between the standard signal and the signal detected using the average method within five trials. The wave pattern result obtained using the proposed algorithm is better and more similar to the standard signal than that obtained by the average method for the same number of trials. Therefore, the proposed method can automatically detect the effective auditory P300 within several trials.
基金Project(61201381)supported by the National Nature Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.
基金Projects(51171135,51371132,51471123) supported by the National Natural Science Foundation of ChinaProjects(2012K07-08,2013KJXX-61) supported by Key Science and Technology Program of Shaanxi Province,ChinaProject(2013JC14) supported by the Education Department Foundation of Shaanxi Province,China
文摘The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrhenius behavior and modifying the baseline of DSC curves, has been proposed. The results show that JMAK exponent and recrystallization activation energy of the drawn copper wires with a strain of 2.77 are about 2.39 and 125 k J/mol, respectively. The line linking the tangency points of DSC curve hypotenuse can be used as the baseline when calculating recrystallization fraction. The JMAK exponent obtained by the DSC method is in a good agreement with that obtained by microhardness measurements. Compared to traditional methods to measure the exponent, the proposed method is faster and less labor intensive.