期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Z_N上离散对数量子计算算法 被引量:6
1
作者 付向群 鲍皖苏 王帅 《计算机学报》 EI CSCD 北大核心 2014年第5期1058-1062,共5页
文中通过多次量子Fourier变换和变量代换,给出了一个ZN上离散对数量子计算算法,刻画了元素的阶r与算法成功率的关系,当r为素数时,算法成功的概率接近于1,新算法所需基本量子门数的规模为O(L3),且不需要执行函数|f(x1,x2)〉的量子Fourie... 文中通过多次量子Fourier变换和变量代换,给出了一个ZN上离散对数量子计算算法,刻画了元素的阶r与算法成功率的关系,当r为素数时,算法成功的概率接近于1,新算法所需基本量子门数的规模为O(L3),且不需要执行函数|f(x1,x2)〉的量子Fourier变换的反演变换,优于已有的ZN上离散对数量子计算算法,其中L=[log N]+1. 展开更多
关键词 量子Fourier变换 离散对数 量子计算算法 公钥密码 量子 网络安全 信息安全
在线阅读 下载PDF
基于多宇宙并行量子遗传算法的非线性盲源分离算法研究 被引量:10
2
作者 杨俊安 邹谊 庄镇泉 《电子与信息学报》 EI CSCD 北大核心 2004年第8期1210-1217,共8页
在系统分析非线性盲源分离模型和算法的基础上,提出了基于输出信号联合累积量的非线性盲 源分离算法,并提出采用多宇宙并行量子遗传算法的优化求解方法,仿真结果表明了算法的有效性.
关键词 非线性盲源分离 联合累积量 量子计算 量子遗传算法 多宇宙并行量子遗传算法
在线阅读 下载PDF
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
3
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部