电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅...电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅食优化算法(IEEFO)。首先,调整能量因子策略,引入了双曲正切能量因子,使算法在迭代过程中提前加入开发行为,从而快速发现最优种群,加快收敛速度;之后,改进扰动因子,扩大电鳗游走的位置范围,有利于种群的全局寻优;然后,在迁徙阶段加入正弦余弦策略,促进算法的局部开发;最后,在每次迭代之后,加入透镜成像反向学习的策略来扩大搜索空间,使得算法跳出局部最优并加速收敛到全局最优解。将IEEFO分别与6种基本算法、4种单策略改进的电鳗觅食优化算法进行对比,对13个基准函数进行仿真实验,对IEEFO算法进行性能评估。实验结果表明,IEEFO相比于对比算法收敛速度更快,全局寻优能力更强,算法总体性能有显著提升。此外,通过一个机械优化设计实验进行测试分析,进一步验证了IEEFO的有效性和适用性。展开更多
虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模...虚拟电厂(virtual power plant,VPP)作为一种新型区域能源管理系统,可通过“源—荷—储”的协调优化调度,高效参与电网二次调频辅助服务。介绍虚拟电厂内部结构,建模分析新能源机组及可控负荷特性;搭建虚拟电厂参与二次调频两阶段调度模型,该模型能够兼顾二次调频净利润及调频效果;研究一种自适应权重的改进量子粒子群优化(quantum particle swarm optimization,QPSO)算法,通过引入自适应权重机制,在量子粒子更新过程中动态调整权重参数以提高算法的搜索能力和收敛速度;并将改进算法应用于两阶段优化过程中,使虚拟电厂获得更高的二次调频净利润及更好的调频效果;仿真结果表明,所提改进算法的收敛速度更快且全局寻优能力更强。展开更多
针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺...针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺序图,并构建了在缩短加工周期、提高加工质量和降低加工成本目标下的最低加工资源更换成本的目标函数;其次,设计加工元序列与加工资源两个搜索阶段的蚁群搜索,拓扑优先顺序图可弥补加工元序列搜索阶段信息素匮乏的缺点,而在加工资源搜索阶段引入细菌觅食优化算法的复制与趋向操作,可使加工元在多个可选加工资源的情况下获得加工资源更换成本最低的加工序列;最后,基于细菌觅食与蚁群算法的融合优化,完成多个加工元序列的信息素积累并输出最优解,解决蚁群算法局部收敛且计算速度慢的问题。将BFACO算法应用于实例并与其他优化算法的优化结果进行对比,结果显示BFACO算法在工艺路线优化方面较其他优化算法具有较高的计算效率,验证了BFACO算法的可行性与有效性。研究表明,BFACO算法可有效应用于同时考虑工艺约束与加工资源更换成本的工艺规划,为实际生产提供高效且灵活的工艺路线的优化选择。展开更多
文摘电鳗觅食优化算法EEFO(Electric Eel Foraging Optimization)在迭代过程中会出现全局探索能力不足、容易陷入局部最优和收敛速度慢的问题。同时,算法的性能受到参数设置的影响,需要仔细调整和优化。对此,提出了一种多策略改进的电鳗觅食优化算法(IEEFO)。首先,调整能量因子策略,引入了双曲正切能量因子,使算法在迭代过程中提前加入开发行为,从而快速发现最优种群,加快收敛速度;之后,改进扰动因子,扩大电鳗游走的位置范围,有利于种群的全局寻优;然后,在迁徙阶段加入正弦余弦策略,促进算法的局部开发;最后,在每次迭代之后,加入透镜成像反向学习的策略来扩大搜索空间,使得算法跳出局部最优并加速收敛到全局最优解。将IEEFO分别与6种基本算法、4种单策略改进的电鳗觅食优化算法进行对比,对13个基准函数进行仿真实验,对IEEFO算法进行性能评估。实验结果表明,IEEFO相比于对比算法收敛速度更快,全局寻优能力更强,算法总体性能有显著提升。此外,通过一个机械优化设计实验进行测试分析,进一步验证了IEEFO的有效性和适用性。
文摘针对工艺路线规划中满足多重约束的最优方案选择问题,提出一种细菌觅食和蚁群优化(bacteria foraging ant colony optimization,BFACO)算法。首先,将工艺路线规划转化为对加工元顺序的优化问题,构造满足多种工艺准则的加工元拓扑优先顺序图,并构建了在缩短加工周期、提高加工质量和降低加工成本目标下的最低加工资源更换成本的目标函数;其次,设计加工元序列与加工资源两个搜索阶段的蚁群搜索,拓扑优先顺序图可弥补加工元序列搜索阶段信息素匮乏的缺点,而在加工资源搜索阶段引入细菌觅食优化算法的复制与趋向操作,可使加工元在多个可选加工资源的情况下获得加工资源更换成本最低的加工序列;最后,基于细菌觅食与蚁群算法的融合优化,完成多个加工元序列的信息素积累并输出最优解,解决蚁群算法局部收敛且计算速度慢的问题。将BFACO算法应用于实例并与其他优化算法的优化结果进行对比,结果显示BFACO算法在工艺路线优化方面较其他优化算法具有较高的计算效率,验证了BFACO算法的可行性与有效性。研究表明,BFACO算法可有效应用于同时考虑工艺约束与加工资源更换成本的工艺规划,为实际生产提供高效且灵活的工艺路线的优化选择。