期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于量子自适应鸟群算法的锅炉NO_x排放特性研究
被引量:
11
1
作者
牛培峰
王丘亚
+3 位作者
马云鹏
赵庆冲
陈科
赵振
《计量学报》
CSCD
北大核心
2017年第6期770-775,共6页
针对锅炉NO_x排放量难以准确预测的问题,提出了一种新的NO_x排放预测方法,利用改进的量子自适应鸟群算法(QBSA)和快速学习网(FLN)进行综合建模,得到锅炉NO_x排放浓度模型。将QBSA与基本鸟群算法(BSA)、差分进化算法(DE)、粒子群算法(PSO...
针对锅炉NO_x排放量难以准确预测的问题,提出了一种新的NO_x排放预测方法,利用改进的量子自适应鸟群算法(QBSA)和快速学习网(FLN)进行综合建模,得到锅炉NO_x排放浓度模型。将QBSA与基本鸟群算法(BSA)、差分进化算法(DE)、粒子群算法(PSO)进行比较,并通过仿真实验证明了其具有更好的寻优精度和更快的收敛速度。最后采用不同工况下的样本数据检测QBSA-FLN与BSA-FLN模型的预测效果,实验结果表明,QBSAFLN具有更高的预测精度和泛化能力,可以更准确地预测NO_x排放量。
展开更多
关键词
计量学
氮氧化物排放特性
量子自适应鸟群算法
快速学习网
在线阅读
下载PDF
职称材料
题名
基于量子自适应鸟群算法的锅炉NO_x排放特性研究
被引量:
11
1
作者
牛培峰
王丘亚
马云鹏
赵庆冲
陈科
赵振
机构
燕山大学电气工程学院
出处
《计量学报》
CSCD
北大核心
2017年第6期770-775,共6页
基金
国家自然科学基金(61573306
61403331)
文摘
针对锅炉NO_x排放量难以准确预测的问题,提出了一种新的NO_x排放预测方法,利用改进的量子自适应鸟群算法(QBSA)和快速学习网(FLN)进行综合建模,得到锅炉NO_x排放浓度模型。将QBSA与基本鸟群算法(BSA)、差分进化算法(DE)、粒子群算法(PSO)进行比较,并通过仿真实验证明了其具有更好的寻优精度和更快的收敛速度。最后采用不同工况下的样本数据检测QBSA-FLN与BSA-FLN模型的预测效果,实验结果表明,QBSAFLN具有更高的预测精度和泛化能力,可以更准确地预测NO_x排放量。
关键词
计量学
氮氧化物排放特性
量子自适应鸟群算法
快速学习网
Keywords
metrology
NOx emission characteristics
QBSA
fast learning network
分类号
TB99 [机械工程—测试计量技术及仪器]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于量子自适应鸟群算法的锅炉NO_x排放特性研究
牛培峰
王丘亚
马云鹏
赵庆冲
陈科
赵振
《计量学报》
CSCD
北大核心
2017
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部