期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种量子自组织特征映射网络模型及聚类算法 被引量:13
1
作者 李盼池 李士勇 《量子电子学报》 CAS CSCD 北大核心 2007年第4期463-468,共6页
提出一种量子自组织特征映射网络模型及聚类算法。量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成。首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子... 提出一种量子自组织特征映射网络模型及聚类算法。量子神经元的输入和权值均为量子比特,输出为实数,量子自组织特征映射网络由输入层和竞争层组成。首先将聚类样本转换成量子态形式并提交给输入层,完成聚类样本的输入;然后计算样本量子态与相应权值量子态的相似系数,提取聚类样本所隐含的模式特征,并对其进行自组织,在竞争层将聚类结果表现出来。采用量子门更新量子权值,分无监督和有监督两个阶段完成网络的训练。仿真实验结果表明该模型及算法明显优于普通自组织特征映射网络。 展开更多
关键词 量子光学 量子自组织特征映射网络 量子聚类算法 量子神经元
在线阅读 下载PDF
基于量子自组织神经网络的Deep Web分类方法研究 被引量:3
2
作者 张亮 陆余良 房珊瑶 《计算机科学》 CSCD 北大核心 2011年第6期205-210,共6页
针对Deep Web数据源主题分类问题,首先研究了不同位置的特征项对Deep Web接口领域分类的影响,提出一种基于分级权重的特征选择方法RankFW;然后提出一种依赖领域知识的量子自组织特征映射神经网络模型DR-QSOFM及其分类算法,该模型在训练... 针对Deep Web数据源主题分类问题,首先研究了不同位置的特征项对Deep Web接口领域分类的影响,提出一种基于分级权重的特征选择方法RankFW;然后提出一种依赖领域知识的量子自组织特征映射神经网络模型DR-QSOFM及其分类算法,该模型在训练的不同阶段对特征向量和目标向量产生不同程度的依赖,使竞争层中获胜神经元的分布更为集中,簇的区域划分更为明显;最后,在扩展后的TEL-8数据集上进行的实验验证了RankFW和DR-QSOFM的有效性。 展开更多
关键词 DEEP WEB接口 特征选择 主题分类 分级权重 领域依赖 量子自组织特征映射
在线阅读 下载PDF
污水处理过程的QSOM出水水质预报 被引量:2
3
作者 李鹏华 柴毅 +1 位作者 熊庆宇 柴华 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期72-79,共8页
针对活性污泥污水处理过程中微生物活动的不确定性、生化反应的复杂性及工艺参数的强耦合和大滞后等特性,提出一种量子自组织特征映射神经网络(QSOM)方法来进行出水水质预报。该方法将出水水质在异常情况下所对应的进水数据样本转换成... 针对活性污泥污水处理过程中微生物活动的不确定性、生化反应的复杂性及工艺参数的强耦合和大滞后等特性,提出一种量子自组织特征映射神经网络(QSOM)方法来进行出水水质预报。该方法将出水水质在异常情况下所对应的进水数据样本转换成量子态形式提交给网络输入层,通过计算量子输入与相应权值的相关系数作为网络的最佳输入匹配,学习规则中采用量子门更新网络权值。最后通过某污水处理厂生化处理过程中的实际运行数据的实验表明所提预报方法是有效的。 展开更多
关键词 量子自组织特征映射神经网络 量子神经元 污水处理 水质预报
在线阅读 下载PDF
基于QSOFM的胃粘膜肿瘤细胞图像识别 被引量:1
4
作者 甘岚 黄伟强 《计算机应用研究》 CSCD 北大核心 2016年第6期1907-1912,共6页
针对胃粘膜肿瘤细胞图像的高维性、不规则性及复杂性的特点,常用的分类方法识别率不高。为了提高识别率,提出了一种基于量子自组织特征映射神经网络(quantum self-organization feature mapping neural networks,QSOFM)的胃粘膜肿瘤细... 针对胃粘膜肿瘤细胞图像的高维性、不规则性及复杂性的特点,常用的分类方法识别率不高。为了提高识别率,提出了一种基于量子自组织特征映射神经网络(quantum self-organization feature mapping neural networks,QSOFM)的胃粘膜肿瘤细胞图像识别方法。该方法将经过主成分分析(principal component analysis,PCA)降维后的图像样本输入到QSOFM中,对其进行无监督和有监督相结合的训练,使得每类胃粘膜肿瘤细胞图像对应精确和唯一的神经元,以此达到将胃粘膜肿瘤细胞图像分为癌、增生、正常三类细胞。实验结果表明,该识别方法在识别率和可靠性方面达到了良好的效果,相比于其他分类算法在识别率上有较大程度的提高,体现出QSOFM在图像识别领域的应用潜力。 展开更多
关键词 胃粘膜肿瘤细胞 识别率 量子自组织特征映射网络 主成分分析 无监督 有监督
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部