期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进的QPSO-BP算法的铀价格预测模型及应用 被引量:2
1
作者 陈建宏 周汉陵 +1 位作者 于凤玲 杨珊 《计算机工程与应用》 CSCD 2013年第21期235-239,244,共6页
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP... 铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5-11-1对铀价格进行预测。结果表明:QPSO-BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为0.002 5,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 展开更多
关键词 价格预测 量子粒子算法 量子粒子算法(qpso)-反向传播(bp)模型 铀价
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部