期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于特征提取和最优加权集成策略的风机叶片结冰故障检测 被引量:4
1
作者 孙坚 杨宇兵 《科学技术与工程》 北大核心 2024年第11期4501-4509,共9页
针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及... 针对风机叶片结冰检测中现有集成方法不能充分发挥不同个体分类器优势的问题,提出了一种基于特征提取和最优加权集成学习的叶片结冰检测模型。首先,用堆叠降噪自动编码器提取结冰关联特征后,考虑不同单一分类器在二分类应用中的表现及其差异,选择随机森林、极限梯度提升树、轻量梯度提升机、K-近邻算法作为个体学习器,并用贝叶斯算法对其进行超参数优化。然后提出基于序列二次规划的最优加权集成策略对叶片状态进行判别。最后利用金风科技提供的15号和21号风机的历史数据进行了仿真实验,结果表明:所提出的检测模型与个体学习器及其他集成模型相比多项指标均有所提升,准确度达到了99.2%,在结冰检测方面具有一定的有效性。 展开更多
关键词 结冰检测 堆叠噪自编码器 贝叶斯优化 序列二次规划 最优加权集成
在线阅读 下载PDF
基于QWDAE和HWMHGRU融合的电力系统短期负荷预测模型 被引量:5
2
作者 李文升 孙东磊 +3 位作者 郑志杰 梁荣 王凇瑶 张智晟 《电力系统及其自动化学报》 CSCD 北大核心 2023年第9期62-67,共6页
为提升电力系统短期负荷预测精度,提出量子加权降噪自编码器和高速通道多层级门控循环单元神经网络融合的短期负荷预测模型。首先利用量子信息处理机制,采用量子加权神经元构建量子加权降噪自编码器,挖掘负荷序列中的有效信息作为输入特... 为提升电力系统短期负荷预测精度,提出量子加权降噪自编码器和高速通道多层级门控循环单元神经网络融合的短期负荷预测模型。首先利用量子信息处理机制,采用量子加权神经元构建量子加权降噪自编码器,挖掘负荷序列中的有效信息作为输入特征;然后提出具有两级门控结构和高速通道结构的高速通道多层级门控循环单元,构成量子加权降噪自编码器和高速通道多层级门控循环单元融合的短期负荷预测模型。仿真结果表明,所提模型具有较好的预测精度和预测稳定性。 展开更多
关键词 高速通道多层级门控循环单元 量子加权降噪自编码器 短期负荷预测 电力系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部