期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于量子加权门限重复单元神经网络的性态退化趋势预测 被引量:4
1
作者 李锋 向往 +1 位作者 王家序 汤宝平 《振动与冲击》 EI CSCD 北大核心 2019年第1期123-129,158,共8页
提出基于量子加权门限重复单元神经网络(Quantum Weight Gated Recurrent Unit Neural Network,QWGRUNN)的旋转机械性态退化趋势预测方法。采用小波降噪-排列熵法构建性态退化指标集,将该指标集输入QWGRUNN完成旋转机械性态退化趋势预测... 提出基于量子加权门限重复单元神经网络(Quantum Weight Gated Recurrent Unit Neural Network,QWGRUNN)的旋转机械性态退化趋势预测方法。采用小波降噪-排列熵法构建性态退化指标集,将该指标集输入QWGRUNN完成旋转机械性态退化趋势预测。QWGRUNN在门限重复单元(Gated Recurrent Unit,GRU)基础上引入量子位来表示网络权值和活性值并构造量子相移门以实现权值量子位和活性值量子位的更新,改善了网络泛化能力,进而提高了所提出的性态退化趋势预测方法的预测精度;采用与自身结构相适应的动态学习参数,改善了网络收敛速度,进而提高了所提出的预测方法的计算效率。滚动轴承性态退化趋势预测实例验证了该方法的有效性。 展开更多
关键词 量子权门限重复单元神经网络 量子计算 排列熵 趋势预测 旋转机械
在线阅读 下载PDF
基于PCA-ShapeDTW-QWGRU的分布式光伏集群短期功率预测 被引量:3
2
作者 欧阳静 秦龙 +3 位作者 王坚锋 尹康 褚礼东 潘国兵 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期458-467,共10页
针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCAShapeDTW-QWGRU)的集群功率预测模型。针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚... 针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCAShapeDTW-QWGRU)的集群功率预测模型。针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚类算法(PCA-OPTICS)的集群划分方法;针对目前选取代表电站与集群相似性较低的问题,提出基于改进的动态时间规整算法(ShapeDTW)的代表电站的选取方法,利用ShapeDTW度量相似性距离,选取最小值作为代表电站,并利用基于均方根传播梯度下降法优化的量子加权门控循环单元(RMSprop-QWGRU)模型进行预测;为了解决代表电站与集群功率的变换系数转换差异较大的问题,采用实时变换系数对代表电站进行集群功率值预测计算。实验结果表明,所提方法能有效提升光伏集群功率预测的精度。 展开更多
关键词 光伏功率预测 集群划分 主成分分析 动态时间规整 量子加权门控循环单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部