A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear reg...A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.展开更多
Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their d...Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).展开更多
基金Projects(20775010, 21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High-tech Research and Development Program of China+2 种基金Project(09JJ3016) supported by the Natural Science Foundation of Hunan Province, ChinaProject(09C066) supported by the Scientific Research Fund of Hunan Provincial Education Department, ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, China
文摘A quantitative structure-spectrum relationship (QSSR) model was developed to simulate 13C nuclear magnetic resonance (NMR) spectra of carbinol carbon atoms for 55 alcohols. The proposed model,using multiple linear regression,contained four descriptors solely extracted from the molecular structure of compounds. The statistical results of the final model show that R2= 0.982 4 and S=0.869 8 (where R is the correlation coefficient and S is the standard deviation). To test its predictive ability,the model was further used to predict the 13C NMR spectra of the carbinol carbon atoms of other nine compounds which were not included in the developed model. The average relative errors are 0.94% and 1.70%,respectively,for the training set and the predictive set. The model is statistically significant and shows good stability for data variation as tested by the leave-one-out (LOO) cross-validation. The comparison with other approaches also reveals good performance of this method.
基金Projects(61533021,61321003,61273185)supported by the National Natural Science Foundation of ChinaProject(2015CX007)supported by the Innovation-driven Plan in Central South University,ChinaProject(13JJ8003)supported by the Joint Fund of Hunan Provincial Natural Science Foundation of China
文摘Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).